

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-11-20798

Implementation of a New
DTSTEP Algorithm for
Use in RELAP5-3D and
PVMEXEC Completion
Report

George L. Mesina

December 2010

INL/EXT-11-20798

Implementation of a New DTSTEP Algorithm for Use in
RELAP5-3D and PVMEXEC Completion Report

George L. Mesina

December 2010

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Naval Reactors

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 1
of 63

Completion Report

INL/EXT-11-20798

Implementation of a New DTSTEP Algorithm
for use in RELAP5-3D and PVMEXEC

Completion Report

Dr. George L Mesina

December, 2010

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 2
of 63

Completion Report

INL/EXT-11-20798

Implementation of a New DTSTEP Algorithm
for use in RELAP5-3D and PVMEXEC

Completion Report

Dr. George L Mesina

December, 2010

Idaho National Laboratory
Thermal Science and Safety Analysis

Idaho Falls, Idaho 83415
http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Naval Reactors

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 3
of 63

Completion Report

Implementation of a New DTSTEP Algorithm
for use in RELAP5-3D and PVMEXEC

Completion Report

INL/EXT-11-20798

December, 2010

Approved by:

Dr. George Mesina Date
Author

Robert Martin Date
Technical Reviewer

Hope Forsmann Date
Technical Reviewer

Dr. James Wolf Date
Project Manager

George Griffith Date
Department Manager

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 4
of 63

Completion Report

EXECUTIVE SUMMARY

The PVM Coupling methodology for decomposing a complex model into domains onto which
individual programs may be applied has proven effective for solving many multi physics
problems. There have been, from the outset, some detailed and/or long running models that
cause the process to fail. Some 26 errors are listed in Tables 1 and 18 and in Section 11. These
arise from deficiencies in the floating point calculation and testing of time steps, cumulative
time, and time targets, along with unforeseen subtleties in the coupling technology.

This project addressed the PVM coupling issues surrounding the DTSTEP subroutines on RELAP5
3D and PVMEXEC. The algorithmic replacement of floating point control of these items with an
integer based time step method resolved these and related issues. This report documents the
theory and implementation of the integer timestep methodology.

This report also provides a great deal of information about DTSTEP for code development and
debugging. Alphabetized lists of all variables in both DTSTEP subroutines (RELAP5 3D and
PVMEXEC) and related Fortran modules are organized into numerous tables according the
subroutine or module in which it occurs. Many internal subprograms were also created in both
DTSTEP subroutines and in some modules. Alphabetized lists of these subroutines and functions,
with brief subprogram descriptions, are stored in other tables.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 5
of 63

Completion Report

Checklist

Good Originality
Good Scientific Relevance
Excellent Completeness
Acceptable Acknowledgement
Good Organization
Excellent Clarity of writing

Checked No mention of funding source
Checked No naming of funding source staff except in references to

open literature
Checked No mention of alternative names for RELAP5 3D or

PVMEXEC

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 6
of 63

Completion Report

CONTENTS
1.0 Purpose and Scope .. 9

2.0 Introduction... 9

2.1 Background.. 9

2.2 Original DTSTEP algorithm and issues ... 10

3.0 Integer Timestep Concept ... 12

4.0 Integer Timestep Basics... 14

4.1 Integer Time Equality Tests ... 15

4.1.1 Normal / Unusual Testing.. 16

4.1.2 The Unusual Handler’s second linked step.. 18

4.2 Integer equality tests... 18

5.0 Integer Time Advanced Concepts.. 18

5.1 Handling Minimal Timestep .. 19

5.2 Exceptions to the halving and doubling logic for Tmax... 19

5.3 Timecard crossing and endtime .. 20

5.4 110% stretch logic ... 20

5.5 Message and Target Time ... 21

5.6 Synchronous Mode Simplification... 21

6.0 Integer Time Implementation ... 22

6.1 Initial Status ... 22

6.2 DTSTEP Functionality ... 22

6.3 DTSTEP Reorganization.. 24

6.4 Define, mnemonically rename, eliminate variables, and fix declarations, create integer
timestep variables ... 27

6.4.3 Mnemonically rename variables ... 29

6.4.4 Fix the Declaration Section.. 30

6.4.5 New Integer Algorithm Variables.. 30

6.5 New Integer Timestepping Modules ... 31

6.6 Internal Subroutines.. 32

7.0 Implementation in PVMEXEC DTSTEP ... 34

7.1 Incorrect vestiges of RELAP5 3D in PVMEXEC DTSTEP.. 34

7.2 Definitions, elimination of vestigal variables .. 35

7.3 Reworking source code of PVMEXEC DTSTEP ... 38

7.3.1 Deleted source code from PVMEXEC DTSTEP ... 38

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 7
of 63

Completion Report

7.3.2 Declarations in PVMEXEC DTSTEP ... 38

7.4 Internal documentation in PVMEXEC DTSTEP... 39

7.4.1 Data dictionary .. 39

7.5 Integer Timestepping in PVMEXEC DTSTEP... 39

7.5.1 Local integer timestepping variables... 39

7.5.2 Module integer timestepping variables .. 40

7.6 Subroutines introduced for restructuring ... 41

8.0 Shared Module idtmod ... 43

8.1 Data ... 44

8.2 Module Internal Subprograms .. 45

9.0 Development and Debugging.. 46

9.1 Development Issues .. 46

9.2 Testing and Debugging .. 47

9.3 Debugging: The Weaver test set ... 48

9.4 The TestDt Tests .. 48

9.5 The Proprietary Tests .. 49

10.0 The DTSTEP Test Matrix... 50

10.1 Test Matrix Design... 50

10.1.1 Package A Timestep Sizes (34 tests) .. 51

10.1.2 Package B Time Targets (102 tests) ... 51

10.1.3 Package C Normal/Unusual Time (408 tests) ... 52

10.1.4 Package D Coupling Configurations (2856 tests)... 52

10.2 The 199 debug card ... 52

10.3 The new Test Matrix subroutines.. 53

10.4 Updates in support of the Test Matrix .. 54

10.5 The New Scripts ... 55

10.6 The Input Models .. 56

10.6.1 The New Input Model.. 57

11.0 Supporting Changes in Existing Coding ... 58

12.0 PVM coupling and DTSTEP Problems solved... 58

13.0 Conclusions.. 62

14.0 Acknowledgements ... 62

15.0 References ... 62

Appendix A 63

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 8
of 63

Completion Report

Figures

Figure 1. Pictorial presentation of tolerance test Type I and II errors .. 12
Figure 2. Correspondence between integer and real time ... 13
Figure 2a. Unusual times cannot be represented exactly by an integer....................................... 14
Figure 3a. First portion of “Sectional Flowchart” for RELAP5 3D DTSTEP Functions.................... 25
Figure 3b. Second portion of “Sectional Flowchart” for RELAP5 3D DTSTEP Functions............... 26
Figure 4. DTSTEP High level Flowchart showing jumps between sections. 27
Figure 5. PVM3WAY Nodalization Diagram... 57
Figure 6. PVM3WAY Nodalization Diagram... 61

Tables

Table 1. Some User Problems associated with Coupling Calculations and DTSTEP........................ 9
Table 2. Example of tolerance test “Type I Error” at a communication point 11
Table 3. Example of tolerance test “Type I Error” at a communication point 11
Table 4. Data dictionary of all variables originally in DTSTEP.. 27
Table 5. Mnemonic names for logical variables .. 29
Table 6. New integer timestepping variables created. ... 30
Table 7. New integer timestepping modules .. 31
Table 7a. New integer timestepping modules .. 31
Table 7b. New Internal Subroutines.. 32
Table 8. PVMEXEC DTSTEP variables with potentially unneeded variables marked..................... 35
Table 9. Integer Timestepping Local Variables in PVMEXEC DTSTEP .. 39
Table 10. Integer Timestepping Local Variables in TARGETMOD.. 40
Table 10a. New Internal Subroutines .. 42
Table 11. Integer Timestepping Local Variables in TARGETMOD.. 44
Table 12. Integer Timestepping Local Variables in TARGETMOD.. 45
Table 13. TestDt input models for debugging unavailable input models 48
Table 14. Test Matrix levels of testing DTSTEP ... 50
Table 15. The 17 Basic Tests of the DTSTEP Test Matrix ... 51
Table 16. Subroutines created to implement the DTSTEP Test Matrix... 53
Table 17. Implementation of Test Matrix basic tests within RELAP5 DTSTEP............................... 54
Table 18. The new scripts that operate the DTSTEP Test Matrix .. 55
Table 19. Test Matrix base input tests, the models and their sets of input files 56

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 9
of 63

Completion Report

1.0 Purpose and Scope

The purpose of this report is to document the changes to the timestep advancement and
selection scheme in RELAP5 3D and PVMEXEC that were successfully implemented.

The algorithm development and work to implement the new algorithm under the constraints of
the project is reported. This document covers developments and testing through released
version r3d244b, developmental version prB2441b.

2.0 Introduction

2.1 Background
The PVM coupling capability was incorporated into RELAP5 3D beginning in 1999. Since then,
several User Problems (UP) have been reported, including the sample appearing in Table 1.

The most common failure is by “hanging the machine.” This means that processes participating
in the coupled calculation have arrived at coding that waits for a particular message to arrive,
but those messages have not been and cannot be sent. Thus no further progress can be made
on the calculation. Another type of coupling calculation error is the failure to perform edits such
as printed output, restart output, and even plot output. Some coupling related errors include
restarts that either fail or differ from the same transient run without restarting. Another class of
errors involve problem that stop before the end of transient and those that do not stop at all.

Table 1. Some User Problems associated with Coupling Calculations and DTSTEP
UP
Number

Description

03009 6000 s transient doesn’t stop. No plot, major, or restart from 3000 s onwards
03019 Marviken deck gets no major or restart edit at end of transient
03022 pvmedax.ii problem core dumps during transient
03024 VHTR calculation stops at 1st timecard end 28800 s rather than 2nd card’s end time

345600 s
04011 A 180 s transient w/ Dt=0.00005 (3600000 advancements) runs past end time.
05001 A long running calculation wrote no restart edits beyond a certain time.
06020 Code stopped writing major edits after 277200 s for a VHTR deck.
06034 RCCS pebble bed reactor calculation wrote no major edits at 10,050 or 45,000.
08015 A 3 loop system calculation the code hangs possibly due to velocity flip flop.

In Table 1, the UP number has the form XXyyy, where XX are the last two digits of the year, and
yyy is the number of the problem in the sequence they were submitted that year.

Not all of the UP listed in Table 1 were ever resolved. Many of those listed were solved by
modifying the floating point calculations and/or tests. However, as examination of the
descriptions will attest, the same kind of problem occurred later for another user input model.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 10
of 63

Completion Report

In more recent years, code hangs were encountered with more detailed models and often with
long running transients. These are recorded in Sec. 10.1 Table 18.

Permanent resolution of all these errors was the purpose of the project described herein. These
errors are related to the timestepping algorithms embodied in the subroutines named DTSTEP in
both RELAP5 3D and PVMEXEC, but primarily in RELAP5 3D.

2.2 Original DTSTEP algorithm and issues
The creation of PVMEXEC, Sec. 19 Ref. (a), and the modification of RELAP5 3D, Sec. 19 Ref. (b),
to operate with PVMEXEC required a fundamental change to the timestep selection and
advancement scheme. Originally, the user selected timestep controls, Tmax and Tmin, were the
primary control mechanism. First, for all timesteps:

for every timestep i (1)

Second, the algorithm enforces a halving/doubling timestep adjustment, subject to (1). The
algorithm cuts the timestep in half and repeats the advancement from the previously successful
time level when limits, such as mass error upper bound or material Courant limit, are exceeded
during the new advancement. Other conditions allow timestep doubling, but only after an even
number of advancements with its current timestep. Therefore, with the exception of Rule (4)
below, all timesteps have the form:

, subject to (1) (2)

Third, the cumulative time attained every integer multiple of Tmax up to the final
time, regardless of the timesteps taken. A mathematical expression of this is: For every integer j,
there is a J for which:

(3)

Because floating point addition is inaccurate due to roundoff error, this rule was enforced by
use of integer based control. The singular exception to rules (2) and (3) was a timecard endtime,
E, a user selected time target that is not a multiple of Tmax. If a slightly larger timestep, up to
110% of Tmax, could reach the endtime, the necessary timestep was taken, even if it did not
have form (1). Algorithmically,

(4)

Because of rules (3) and (4), all RELAP5 3D user requested output (major and minor edits, plots
and restarts) is written only at multiples of Tmax or at timecard endtimes and there were no
issues with output.

With the addition of coupling to RELAP5 3D, there is need to reach arbitrary communication
points, CM, that may violate rule (3) without being a timecard endtime. Resolution of this

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 11
of 63

Completion Report

requirement could be handled three ways: a new algorithm, a generalization of the existing
algorithm, or restrictions on user input. The latter was deemed unacceptable as it would require
code users to ensure that the same timestep input was used in the PVMEXEC and RELAP5 3D
input decks. A choice was made to generalize the existing timestep algorithm.

Inaccuracies in floating point arithmetic make reaching unusual communication time targets
difficult if PVMEXEC and RELAP5 3D are on different compute platforms. This is caused by the
well known issue of accumulation of floating point round off error. Table 2 shows that starting
at the same time and taking the same sized steps results in different cumulative times on a 64
bit floating point Opteron vs. AMD 64 chip. Moreover, on a given processor, using a smaller
timestep to arrive at the same target time (1005 sec) produces different roundoff error.

Table 2. Example of tolerance test “Type I Error” at a communication point
Specification Tstart=1000.0, N = 100 timesteps t = 0.005
Opteron T = 1005.0000000745
AMD 64 T = 1004.999999888
Specification Tstart=1000.0, N = 1000 timesteps t = 0.0005
AMD 64 T = 1005.000000238

Since communication points, CM, may not occur at multiples of TMAX, the integer based control
for reaching output points could not apply and it is clear that a floating point equality test would
fail due to roundoff. A standard computer science solution is to apply a floating point tolerance
test rather than an equality test. In generalizing the algorithm, all communication and output
times were evaluated using tolerance tests. The test function and test form were:

(5)

(5a)

Communication between RELAP5 3D and the PVMEXEC took place when cumulative time was
sufficiently close to communication target, CM. The tolerance, , was taken to be larger than the
round off error produced in the test problems, but small enough to force communication at the
correct time; = 10 8 was used.

There were two opposing problems with the approach. The first problem occurs when round off
alters cumulative time by more than . In Table 2, round off is in excess of 2x10 8 > . Thus, a
tolerance test of the form (5a) can activate at the wrong time or can be entirely bypassed. For
example, with Tstart = 1.0, CM = 1.001, Tmax = 10 2, Tmin = 10 7, tsmallest = 1.52587887214593x10 7

(via repeated halving). If every timestep were at this smallest t, the results are in Table 3.

Table 3. Example of tolerance test “Type I Error” at a communication point
Step # Ti = Cumulative Time C(Ti, t) = |Ti + t CM|
6553 1.0009990842492 1.38x 10 7 >
6554 1.0010000610128 1.43x 10 8 >

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 12
of 63

Completion Report

The difference is calculated according to Eq (5). Since both differences exceed , the test (5a)
can never activate; as shown in Figure 1. Several User Problems, UP, were reported that had this
at their source. In statistical terms, the null hypothesis is “test is true when Ti is closest.” This is
always rejected, even when true (on step 6554). Rejecting the null hypothesis when it is true is
called Type I error or a false positive. Type I error can be overcome by making larger. For
example, if = 2x10 8, the test would activate on step 6554. It could also be overcome by making
Tmin smaller; this leads to a problem with type II error as discussed next.

Figure 1. Pictorial presentation of tolerance test Type I and II errors

In fact, RELAP5 3D input allows tMIN 10 12; so Tmin < = 10 8 is allowed. With such input,
tolerance tests like (5a) will activate on the very first time Ti + ti+1 is within = 10 8 of CM. As
shown in Figure 1, this occurs before the intended activation time (the closest cumulative time).
The test activates when it should not. Accepting the null hypothesis when it is false is called
Type II error or a false negative. Type II error can be overcome by making smaller.

It is clear that altering can never overcome both types of error as Type I error requires to be
increased while Type II error requires to be reduced. Nevertheless, attempts were made to
determine a value of that was large enough such that round off error could be mitigated and
small enough to preclude false negatives. Application of the coupled code system to complex
and long running problems of interest revealed several failures in the floating point based
algorithm. Other slight modifications of the floating point timestep algorithm were introduced;
failures were resolved, however, the general Type I and Type II error problems were not.

3.0 Integer Timestep Concept
Since the floating point tolerance test was insufficient to resolve the combined Type I and Type
II error issue that was caused by floating point round off, the INL proposed to develop an integer
based algorithm for time stepping to replace it. The fundamental reason was that integer
addition, subtraction and multiplication are exact; there is no round off. However, as PVMEXEC
and other all codes connecting with RELAP5 3D use real time for output, communication and
timecard end, the integer algorithm must also use floating point values for these.

Use of integers to count time is not a new idea. Though time is inherently a continuous quantity
that is best represented by floating point values on a computer, integer based time is used in all
computers. Computer chip speed is rated in terms of the number of billion operations it can

Type I Error: Bypass communication pt.

Ti Ti+1CM

t
Type II Error: Activate before closest value

Ti
CM

t

Ti+1 Ti+3Ti+4

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 13
of 63

Completion Report

perform in a second in GHz or clock cycles. A clock cycle is the amount of time to perform the
simplest operation or one tick of its clock. The integer basis for time stepping is also the clock
cycle or tick and that is defined to be the smallest timestep that RELAP5 3D can take and is
denoted tsmall. It is generated by the user’s selection of Tmax and Tmin. An example is shown in
Figure 2 with real time denoted t, integer time denoted , tmax = 0.004, and tmin = 1.0e 7.

Figure 2. Correspondence between integer and real time

In this case, the integer clock cycle value =1 tick, represents real time tsmall=1.220703125x10 7

and max = 215 because 215x(1.22x10 7) = 0.004. Thus, t1 = 1.000 corresponds to 1 = 250x215 =
8192000, and 2 = 1 + 214 = 8208384 because .002 = 214x(1.22x10 7).

The formulae that generate the correspondence between reals and integers are given New
Algorithm 1 which encompasses Eq. (6), (6a), and (6b).

New Algorithm 1. Integer/Real Time Initialization (start of transient)

 (6)

2. max = (6a)
 tsmall = Tmax/ max = Tmax/ (6b)

Note: the floor function in Eq. (6) truncates real numbers by removing the fractional portion. In
Figure 2, log(.004/.0000001)/log(2) 15.28; so H = Floor[15.28] = 15, max = 215 = 32768, and
tsmall = .004/32768 = 0.0000001220703125.

There is no concern about restricting the range of floating point values that can be represented
by 64 bit integers. A 64 bit integer can represent values in excess of 9x1018. This is sufficient, for
example, to exactly calculate every integer multiple of tsmall, between TMIN = 10 9 and T=109

seconds.

Integer timestepping has replaced real timestepping in RELAP5 3D and PVMEXEC. However,
most of the complication occurs in RELAP5 3D; therefore most of the ensuing discussion is
presented from the perspective of the RELAP5 3D code. Reference is made to PVMEXEC where
helpful and in the PVMEXEC section.

1=8192000 3=82247682=8208384

t seconds

clock cycles

t1 t3

1.0021.0 1.004

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 14
of 63

Completion Report

4.0 Integer Timestep Basics
This tsmall is the smallest value of t that satisfies rules (1) and (2), but it can change on every
timecard, C, because the user can change the max and min timestep, Tmax,C and Tmin,C. The
calculations for crossing to timecard C 1 to timecard C are given in New Algorithm 2.

New Algorithm 2. Timecard crossing
 2

2. max,C =
 tsmall,C = Tmax,C/ max,C

 C = 0

Step 4 is the only real difference from New Algorithm 1. It restarts integer cumulative time at
zero with every timecard while floating point cumulative time is unaffected. Throughout the
time controlled by timecard C, integer cumulative time, floating point t, and floating point
cumulative time are calculated by the Equations of New Algorithm 3. Note that TC 1 is the
endtime of the timecard C 1; it is also the beginning time of timecard C.

New Algorithm 3. Integer/Real time advancement (for chosen i)
 C,i = C,i + i (7)

2. ti = tsmall,C* i (7a)
3. Ti = TC 1 + C,i* tsmall (7b)

Floating point cumulative time and time targets sent at a communication points by PVMEXEC to
RELAP5 3Dmust be converted to integers. Time targets are communication, output, or timecard
end times. Floating point time targets may not be representable exactly by an integer multiple
of tsmall,C. An unusual time target is not a multiple of tsmall,C, a normal time is.

An unusual time can be created by user selection of a timecard endtime that is not a multiple of
Tmax. It can also be caused by PVMEXEC having a different Tmax than RELAP5 3D. Time targets,

TTarg, created by PVMEXEC are integer multiples of its tsmall, namely tsmall, C’, P. Time targets are
unusual if they are not multiples of the tsmall of RELAP5 3D, namely tsmall, C, R.

If TTarg is unusual, there is no exact integer representation for it. The corresponding value on the
timeline lies between two consecutive integers. Figure 2a has TTarg = 1.0021 and TC 1 = 1.0; thus
left = [(TTarg Tc 1)/ tsmall] = 8192000 + 17203 (truncated) and right = left + 1 = 8209204.

Figure 2a. Unusual times cannot be represented exactly by an integer.

1=250x215

t3

t, Sec

, Clock cycles

t1 t3

1.0 1.004

TTarg=1.0021

1.002

right=8209204
left=8209203

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 15
of 63

Completion Report

Of course, if TTarg is a normal time, then integer Targ = Round[(T – TC 1)/ tsmall] exactly represents
the real time target and there are no issues reaching it.

Let TE,k be the next minor edit, plot, major edit, restart, and PVM communication points from
the PVM message, respectively, and let E,k be the integer equivalents. The conversion of floating
point time quantities to integers is given in New Algorithm 4. Rounding is necessary to prevent
automatic truncation of fractional portions of real quotients in integer conversion. For example,
applying Eq. (8) to Table 3 with T = 1.0009990842492, tsmall = 1.52587887214593x10 7 and TC =
1.0, yields C = 6547 without rounding, but 6548 with rounding.

New Algorithm 4. Convert real time quantities to integers
 C = f(T, TC 1, tsmall) Round[(T – TC 1)/ tsmall] (8)
 i = Round [ti/ tsmall] (8a)
 E,k = Round[(TE,k TC 1)/ tsmall], j=1, . . . ,5 (8b)

This algorithm applies to unusual or normal time quantities. However for unusual quantities, the
integer does not exactly represent the floating point quantity.

Another important concept is the so called perfection of the timestep, t. This means making a
normal timestep into an exact multiple of small. It is necessary since floating point calculations
of t elsewhere in the overall DTSTEP algorithm may result in a ti that is not an integer multiple
of small. Just before advancing time, a normal timestep is perfected with New Algorithm 5.

New Algorithm 5. Perfect a normal timestep
 Normal = (i+1* tsmall – ti+1| < (9)
If (Normal) then

a. ti+1 = tsmall,Cx i+1 (7a repeated)
b. Ti = TC 1 + (C,i)x(tsmall) (7b repeated)

If the timestep is close to a multiple of small, then inexactness in its last bits resulting from
roundoff in its calculation is eliminated by (7a). The same is done for cumulative time. Since ti+1
does not arise from a sum of many terms, accumulation of roundoff is not an issue; thus
roundoff is confined to the last one or two bits, depending upon the calculation. Therefore, is
taken to be a very tight tolerance. Initially, = 10 10 was used; however, for very large timesteps,
such as in the ans79.i input model with timesteps on the order of 106, the tolerance must scale
with the size of the timestep, and therefore = ti+1x10 10 was used.

These conversions provide a basis for replacement of floating point tolerance tests with integer
equality tests for reaching a time target. This issue is explained in Section 4.1.

4.1 Integer Time Equality Tests
If TTarg is normal, then integer Targ, defined via Eq. (8b), exactly represents the real time target
and there are no issues reaching it. For unusual time targets there is considerable complication.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 16
of 63

Completion Report

The idea for handling unusual times is to consider two linked timesteps that will reach from the
current advancement, i, at time Ti to advancement i+2 at Ti+2 = Ti + 2 ti. During the first linked
step, integer and real time do not correspond exactly. The timestep used by RELAP5 3D during
advancement i+1 is the value of t that exactly reaches TTARG. The second step reaches Ti+2.

New Algorithm 6: Unusual Time Target Handler
If (UH is false) UH = (Ti + ti+1 TTARG) and (TTARG is unusual)
Linked Advancement 1 when UH is true

1. ti+1 = TTARG Ti
2. i+1 = left i

3. save = i i

4. Tsave = Ti + 2 ti
Linked Advancement 2, when UH is true,

1. ti+2 = Tsave TTARG
2. i+2 = save i+1

3. UH = false

Variable UH indicates that the unusual handler is active when true, otherwise it is false. Once
the handler is on, UH keeps it on until the second linked advancement is finished. There are two
complications with New Algorithm 6. The first is determining that TTARG is unusual; see Section
4.1.1. The second occurs when the second linked step is halved by other portions of the DTSTEP
algorithm; see 4.1.2. Also, this algorithm does not cover the 110% stretch logic of rule (4).

4.1.1 Normal / Unusual Testing
Algorithm 6 applies to unusual targets, those that are not exactly a multiple of tsmall. However,
it is important that times very close to multiples of tsmall be considered normal also. Otherwise
accumulation of any roundoff error would cause virtually every time value produced via floating
point summing to test as unusual. Another consideration besides roundoff is the variation in the
quotients when divided by tsmall. Quotients of larger numbers, such as T, can have less accuracy
than those of smaller numbers, such as t. Therefore, determination of unusual time target is
better served by basing the test for normality on t rather than TTARG.

There are two coupling modes based on control of the timestep by PVMEXEC. In asynchronous
coupling modes, all codes proceed to a communication point with their own selection of t at
every step. In synchronous mode, PVMEXEC supplies ti+1 to all coupled codes at every step, and
all codes must use that timestep. This is summarized in Eq. (9).

(9)

With the timestep selected, the determination of unusualness is made with New Algorithm 7.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 17
of 63

Completion Report

New Algorithm 7. Time Target Unusualness Test
1. check = Round [ti+1/ tsmall] (10)
2. tch = check* tsmall (10a)
3. UNUSUAL = | tch ti+1| > 0.01x tsmall (10b)

Algorithm 7 sets UNUSUAL to true when the target is an unusual time. Since ti+1 and tch have
the same size and agree for many leading digits. The number of leading digits that must agree
determines unusualness. Requiring too many allows accumulation of roundoff to falsely indicate
unusual status when the target is normal. Not requiring enough allows some unusual targets to
falsely test as normal. This is a Type I vs. Type II error situation.

Note that for smaller timesteps than tmax, the subtraction in Eq. (9) reduces the number of
significant digits available to compare. The test reflects this loss. Comparison against 0.01x tsmall

in Eq. (10b) requires at least two decimal places of agreement when ti+1 is close to tsmall in
size, and requires more places of agreement for larger ti+1. Typically, Tmax/ Tmin 106, so
typically, agreement to 6+2=8 places is required for ti+1 near Tmax. For IEEE 64 bit floating pt.
representation, approximately 15 digits can be represented fully. Therefore, agreement to the
first 8 places ignores the lowest 7=15 8 respectively.

Since New Algorithm 5 perfects every normal timestep and its associated cumulative time, Ti,
only the final bit of Ti is subject to roundoff error. However for a large cumulative time, the
difference ti+1 = TTarg Ti in Equation (9) can account for a substantial loss of significant digits,
creating an inaccuracy in the lowest 7 decimal places. This problem is itself mitigated on most
modern platforms that use 96 bits for floating point operations (effectively adding 10 extra
digits to the calculation) before rounding to store the value. Thus it is very difficult, but possible
if all 15 digits of time are important, for New Algorithm 7 to fail.

It is possible to improve New Algorithm 7 so that failure is even less likely. By combining Eq.
(6b), (2) and (7a) it is seen that a normal integer timestep is always a power of two.

tsmall = Tmax/2H, Tmax 2H tsmall

ti = Tmax/2k tsmall2H/2k = tsmall
H k

i = ti/ tsmall = H k.

Any timestep taken to reach a time target whose integer representative is not a power of two is
automatically unusual. A simple test for this is given in New Algorithm 8.

New Algorithm 8. Power of two test for normality
1. H = Round[log(i+1)/log(2)]
2. NORMAL = (i+1 .eq. 2H)

The combination of Algorithms 7 and 8 provides a better test for normality or unusualness than
Algorithm 7 alone.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 18
of 63

Completion Report

4.1.2 The Unusual Handler’s second linked step
The second linked step of Algorithm 6, Unusual Time Target Handler, must handle two cases:
(1) t is halved by other portions of the DTSTEP algorithm or
(2) The advancement is repeated.

Case (2), repeating either the first or second advancement causes a special logical variable to be
set to indicate that time backed up by one timestep. On the next pass through DTSTEP, the
unusual handler is cancelled.

Case (1), if the first linked step succeeds and the second is halved and repeated, the saved target
Ti+2 cannot be reached on the second step. However, the handler is cancelled by the backup and
the rest of the DTSTEP algorithm will create an appropriate timestep.

4.2 Integer equality tests
With these definitions, conversion equations, and algorithms in place, all the floating point
tolerance tests were replaced with integer equality tests.

Replace statements with this form,
If (abs(Ti + ti – TTARG) <) action

With
If (i + i .eq. TARG) action (11)

There were also tests that required integer inequalities, such as stretch logic. There were a
couple of tests that had to remain floating point, such as a Courant limit test. Converting all tests
proved insufficient to solve all the problems with the PVM coupling of RELAP5 3D to other
codes. Some of these are covered in Section 5.

5.0 Integer Time Advanced Concepts
Advanced concepts covers the solution to difficult programming issues due either to complexity
in the algorithm underlying the original coding, or to the need to create alternative means to
implement with integers an algorithm designed for floating point calculations. The latter were
often revealed by runtime errors. Most errors with the integer time step involved integer
cumulative time differing from a time target by exactly one. Most of these involved time targets
generated by PVMEXEC and sent to RELAP5 3D. Under close examination, the source of each of
these was tracked and solutions devised.

Before examining these issues, it is important to note two conditions that were placed upon the
workscope as they restricted the choice of solutions. The development and implementation of
the integer algorithm was carried out under two constraints:
1. The functionality of DTSTEP must remain the same.
2. The PVM messages cannot be altered in any way, neither by adding new communication

messages nor by modifying any existing message.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 19
of 63

Completion Report

The first constraint was put in place to ensure that the tens of thousands of existing input
models would continue operating exactly the same before and after the change to the
algorithm, except that problems which failed under the tolerance test were to run under the
integer algorithm. It was recognized cumulative time would be slightly different because of
more accurate temporal calculation; however this is not a change of functionality.

The second constraint was put in place to preclude the necessity of modifying all the computer
codes that had previously been programmed to communicate with RELAP5 3D and PVMEXEC.
Although efficient at reducing overall rework, two exceptions to this constraint proved
necessary for solving difficult issues; these were eventually implemented.

In the interest of brevity, only five of the many and complex advanced issues are covered, and
only from a high level perspective. Those addressed include: handling minimal timesteps in Sec.
5.1, finding a target halving of Tmax in Sec 5.2, timecard crossing in Sec 5.3, message exchange
time in Sec 5.4, the 110% stretch logic in Sec 5.5, and the simplification of the synchronous
coupling handler in Sec. 5.6.

5.1 Handling Minimal Timestep
The DTSTEP algorithm originally automatically halved a timestep if certain conditions occurred,
such as excessive mass error, even if already minimal, temporarily making ti+1 = tsmall/2. Later,
the algorithm would correct this by doubling ti+1 if below Tmin. The reduction below Tmin

occurred in several places in DTSTEP. This algorithm does not work for integers because the
smallest integer is 1; halving 1 produces 0, and doubling 0 produces 0, not 1.

The solution was to rework the DTSTEP algorithm so that timesteps were not allowed, under any
circumstances, to go below 1 for integers and for Tmin for reals, and automatic doubling was
adjusted to account for this. In compliance with the requirement that DTSTEP functionality be
unchanged, it is noted that this had no effect on the functionality of DTSTEP. See Section 5.0.

5.2 Exceptions to the halving and doubling logic for Tmax
There are several instances in the overall DTSTEP algorithm when the current t does not fit the
DTSTEP halving and doubling scheme, rule (2). These instances are:

1. When crossing to a timecard with a different Tmax, different Tmin, or both
2. When T is calculated to satisfy Courant limit
3. After a 110% stretch to a time target has occurred
4. After a compression to take 2 equal steps to reach a time target

In all these cases, the time step in use does not match the form of rule (2). Return to the correct
form is required so that the halving/doubling logic of DTSTEP works properly. This is done in
accordance with Section 5.0 requirement that the functionality of DTSTEP not be changed.

In the original DTSTEP algorithm, a timestep halving loop starting at the controlling value of
tmax and halving the candidate timestep was used. It stopped with the first value less than or

equal to the target value. It could produce a value below tsmall.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 20
of 63

Completion Report

This is unworkable for the integer algorithm as explained in Section 5.1. New Algorithm 9 was
created that stopped if tcandidate < tsmall, and set tcandidate = tsmall and set candidate using Eq.
(8a). If the target was negative, it set the failure flag to true so that the RELAP5 3D calculation
could terminate gracefully.

New Algorithm 9. Find Halving target
If (target < 0.0) then

Fail = true
Else if (target < tsmall) then

t = tsmall

Else
Loop (on k) to find t = (0.5)k TBASE target
where TBASE is either TMAX or an unusual time step

Endif
= Round[t/ tsmall]

Note that the halving is actually performed by multiplication by the reduction factor of 0.5. The
test for negative target is included because during the debugging, negative timesteps were
created in other portions of DTSTEP and this was introduced to catch those and stop gracefully.

5.3 Timecard crossing and endtime
From the original DTSTEP algorithm, a timecard crossing is governed by the logical variable LAST.
This variable was set differently for PVM synchronous control, for which it could only be true at
the transient end, than for all other modes of operation where it is true at timecard endtimes.

Under PVM asynchronous control or autonomous RELAP5 3D control, LAST became true only
when, before a timestep can be taken, cumulative time is already past the timecard endtime.
The integer equivalent test was an inequality, rather than an equality such as Eq. (11).

Under synchronous control, this test was restricted to transient endtime as calculated from the
values of Tmax and Tmin and Tend on the most recent PVM communication of these values.
Synchronous control was maintained according to Requirement 2 of Sec 5.0.

5.4 110% stretch logic
The stretch logic was applied to reaching every unusual time target. For PVM coupling, DTSTEP
included stretch logic for plot, minor edit, major edit, restart, communication time and timecard
endtime. There were two issues to resolve, conversion to integers and the proper order.

This test required a conversion to integers for the testing, but use of floating point time to
calculate the potentially unusual timestep. In some cases, the 110% stretch logic actually caused
a timestep to be shortened to an unusual step to exactly reach the next target time. Finally, the
algorithm for processing the stretch differed between autonomous control, PVM synchronous
and PVM explicit time control in RELAP5 3D.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 21
of 63

Completion Report

With explicit time control in use, the explicit message exchange time was the most important
time to reach. It was necessary to override the 110% stretch when taking a step of that size
would step past an explicit message exchange time to reach a larger time target; that would
result in a “code hang” or “hung machine.” Both mean that one code is waiting for one kind of
message while the other code waited for another, and no message is being sent by either. This
created in an interminable period of waiting, otherwise called a “code hang,” and required the
coupled calculation to be terminated by outside intervention.

This induced a requirement to check and insure that explicit exchange time could never be
bypassed. The functionality was preserved according to requirement 2 of Sec 5.0, but the
algorithm was adjusted to account for this and solutions to issues identified during debugging.
Subroutine dthyCalc (see Table 7b) embodies this algorithm; so it is not given here.

5.5 Message and Target Time
The time to exchange messages was a major source of programming issues for PVM coupling
between RELAP5 3D DTSTEP and other codes, including PVMEXEC DTSTEP. Roundoff error often
caused the codes to meet the exchange time condition on a different timestep resulting in a
hung machine. This was an issue for both synchronous and asynchronous coupling.

Depending on whether coupling is synchronous, asynchronous, or standalone, different logic
paths and calculations are performed and the messages are different or non existent. The
programming was complicated by insufficient data for the original RELAP5 3D DTSTEP algorithm
that required end of timecard. No successful substitute for that datum was found; so eventually
it had to be added despite Section 5.0 rule 2. Integer calculations were further complicated by
exchange times that were unusual times.

To reduce rounding errors when converting floating point times from messages to integers,
message times were recalculated, based on the controlling Tmax and Tmin at every message
exchange. In fact for the same reason, whenever one target time was reached, every target time
was recalculated.

5.6 Synchronous Mode Simplification
In the original implementation of the integer based timestep size selection and advancement
algorithm, there were situations in which RELAP5 3D, operating in a synchronous mode where
the ultimate timestep size is determined by PVMEXEC, was performing calculations of the
timestep size needed to reach special communication intervals. The logic that was used for
some of the calculations was inconsistent between RELAP5 3D and PVMEXEC, but more
importantly, the logic was completely superfluous. However, according to requirement 2 of
Section 5.0, this superfluous logic and coding could not be eliminated.

After numerous efforts to correct the inconsistencies between RELAP5 3D and PVMEXEC, it was
decided to make another exception to Sec. 5.0 requirement 2. This resulted in essentially a new
algorithm for handling synchronous coupling. In the new algorithm, RELAP5 3D reports a
timestep size back to PVMEXEC that depends only on the built in error checking and error
mitigation processes in the code, including the prohibition of violating the Courant Limit for

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 22
of 63

Completion Report

RELAP5 3D problems that use the semi implicit time advancement scheme. This represents a
significant reduction in the logic associated with time step size selection for synchronously
coupled calculations.

6.0 Integer Time Implementation
Initial status is in Sec 6.1. The implementation had many parts: mapping DTSTEP functionality in
Sec 6.2; moving code into collections according to functionality in Sec 6.3; defining, eliminating
& mnemonically renaming variables in Sec 6.4; creating a module for integer data in Sec 6.5; and
creating internal subroutines in Sec 6.6.

6.1 Initial Status
The original status of RELAP5 3D DTSTEP was poor. There was little documentation, numerous
GOTO statements (both forward and backward) which made tracing the logic flow extremely
difficult, non mnemonic variable names, large amounts of inert or unused code marked with
pre compiler directives, even some sections of dead code. Over a dozen authors had written
code and modified it; thus many programming styles were present. All this made the main
algorithm hard to read and understand.
The PVMEXEC DTSTEP subroutine was created from the RELAP5 3D DTSTEP subroutine by
removing coding unneeded for controlling the coupled calculation and then adding the
communication and decision logic to operate as the executive. It had many of the same issues.

There were a number of existing and unresolved user problems before this project began (all of
which have since been resolved); Table 1 lists several and indicates that debugging these two
subroutines had been ongoing for 5 years. Moreover, there were also a number of undiscovered
errors that this project revealed and resolved. Together, the pair of subroutines had algorithmic
and coding issues as well as a number of errors.

6.2 DTSTEP Functionality
Mapping the DTSTEP functionality was the necessary starting point. It supported requirement
one of Section 5.0 and proved essential to all ensuing work. The following is a high level
summary of the functionality within RELAP5 3D DTSTEP after removing all coding that is either
inert or otherwise unused.

A. AUTOMATIC FUNCTIONS
1. Initialization

 Unconditional initialization
 Initialization carried out on the first transient step only
 Card one initialization

2. Advancement statistics collection
B. END OF ATTEMPTED ADVANCEMENT PROCESSING

3. Time step success evaluation
 Based on RELAP5 3D criteria, set indicator of step success, failure or backup
 If synchronous hydraulic coupling, (A) send indicator to PVM executive, (B) Receive

global success flag from PVM executive

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 23
of 63

Completion Report

 For failure – restore old time step, time and data, activate debug
 For backup reduce time step and time, restore old data

4. Transient/steady state termination conditions
 RELAP5 3D termination conditions

 Normal Transient terminated by end of time step cards
 Transient terminated by trip
 Transient terminated by approach to CPU time limit.
 Transient has reached steady state.
 Transient terminated by interactive command.
 Transient terminated by Card 105 input option.
 Transient terminated by variable volume model.

 Transient terminated by failure in PVM coupled computation
 Help operations

5. Time targeting
 *Current & next edit time– Based on time step card and PVM target time data
 *Exact arrival at time target – New integer based time target algorithm

C. SET UP / PREPARATION FOR “NEXT” ATTEMPTED ADVANCEMENT
6. PVM communication

NOTE: this is only done if success is indicated and it is not the last advancement.
 If at explicit asynchronous hydraulic coupling communication time, send/receive

appropriate messages
 If explicit synchronous hydraulic coupling, send/receive appropriate messages
 If at a PVM (edit or explicit coupling time) target time, receive new set of PVM

target times
7. RELAP5 3D time step calculation

Note: only the final selection sub function is performed if success flag indicates failure.
 *Time step card control processing –control from current card, next card?
 *Courant limit calculation(s)
 *Time step halving and doubling – RELAP5 3D conditions that change time step size
 Hitting the target – stretch above max, shrink below min, two equal steps
 Final selection of time step – Based on success/failure control, normal step

selection, and hitting target. Update cumulative time and advancement count.
8. PVM synchronous time step communication

 Send synchronous message – Transmit time step to PVM executive
 Receive synchronous message – Get global time step

D. OUTPUT
9. Code output

 Screen text
 File output

 Printed output file (major and minor edits)
 Restart plot files (plot records and restart records, sequential & direct access)
 Dump files (binary files controlled by 105 card input)
 Additional debug output (controlled by failure modes, 105 card input)

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 24
of 63

Completion Report

Note that the four major sections and nine subsections are arbitrary and introduced by the
author merely to enhance understanding. The coding showed no such breakouts, nor did the
coding for all these sections exist in contiguous blocks.

6.3 DTSTEP Reorganization
These functions identified in Sec 6.2 were reorganized into 11 major sections and coding was
moved to collect the statements that worked together to perform these functions. This was
done without affecting the logic flow. Figures 3a and 3b give a “sectional flowchart” of the
reorganization of DTSTEP.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 25
of 63

Completion Report

Figure 3a. First portion of “Sectional Flowchart” for RELAP5 3D DTSTEP Functions

1. Initialize
1 Initial logic flow control flags
2 Initialize time step control variables
3 if (.not.skipt) “First entry only initializations”
4 set nmechk, CPU time

2. Abrupt Changes to Transient
(Terminate, halve/double, repeat)
1 Evaluate various immediate terminal tests
2 Handle failed advancements and terminations
3 Handle halve/double, minimum step, repeating

3. Gather statistics
(Done for major edits)

4. New Advancement
1 Conditional advancement to next timecard
2 The advancements are to continue.
3 Test for steady state, subroutine sstchk

5. Code Output
1 Screen output
2 Plots on disk for internal plots
3 Minor edits
4 Restart records on restart plot file
5 R5 Force
6 Plot records on restart plot file
7 Nuclear Plant Analyzer
8 Compression: sqoz, comprs, snaptrans
9 Direct access restart plot file

NOTE
This sectional flow
diagram shows no
arrows for jumps
between or within
sections.

6. PVM 8002 8005 message exchanges
1 Explicit parallel synchronous (8002)
2 Explicit parallel asynchronous (8003)
3 Explicit sequential synchronous (8004)
4 Explicit sequential asynchronous (8005)

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 26
of 63

Completion Report

Figure 3b. Second portion of “Sectional Flowchart” for RELAP5 3D DTSTEP Functions

This sectional flowchart, when compared with the outline of DTSTEP in Section 6.1, shows code
movement to recollect and unify functionality. It does not show jumps between sections. Figure
4 does.

7. New Time Targets
1 Edit time via PVM 8000 message
1.1 Receive Time Targets
1.2 Transfer time targets to scalars
1.3 Integer time
1.4 Explicit conserving calculation data
1.5 Acknowledge receipt of 8000 message
2 Edits via R dtstep timecards
3 Edits not controlled by PVM executive
4 Change conversion function

8. User Interfaces (UI)
1 SNAP
2 Nuclear Plant Analyzer
3 Interactive (keyboard) variables
4 International Atomic Energy Agency GUI
5 Opensim Simulator

9. Time Step Selection
1 Timecard end
2 Transient end

10. Time Step Selection
1 Reset time step and edit time
2 Conditional time step stretch
2.1 Change 60 time stepping
2.2 Normal time stepping
3 Courant limit(s)
3.1 Find halving of DT below Courant limit

11. Time Step Selection
1 PVM message 8001: Synchronous exchange
1.1 Transmit suggested new dt
1.2 Receive new dt, edit times
1.3 Unpack new dt, edit times
1.4 Integer time targets
2 Unusual time
2.1 Integer float disconnect
3 Handle 105 card
4 Copy current data to old
5 Correct floating point time

Return

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 27
of 63

Completion Report

Figure 4. DTSTEP High level Flowchart showing jumps between sections.

In Figure 4, black is for normal flow and dark red jumps go to output. Other jumps shown lead to
the subroutine exit. Jumps not shown are internal to a given flowchart section. In the initial
DTSTEP coding, these included jumps around coding that did not belong to the section.

6.4 Define, mnemonically rename, eliminate variables, and fix
declarations, create integer timestep variables
Before the conversion to integer timestepping could be undertaken effectively, workings of the
DTSTEP subroutine had to be understood. Part of this was mapping and reorganizing the coding,
but another part was deciphering the meaning of the variables and giving them more mnemonic
names. This was undertaken simultaneously with the work of Sec 6.3.

All variables in DTSTEP relevant to the project were deciphered and documented in Table 4. The
meaning of variables such as gt19, iosini, nwqa, and j (not a loop counter) then becomes clear
for logic flow tracing, debugging, and conversion to integer timestepping.

Table 4. Data dictionary of all variables originally in DTSTEP
Key: Local variable names in lower case

GLOBAL variable names in UPPER case
Name Definition / Description
af time step Amplification Factor for time step (normally = 2.0).

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 28
of 63

Completion Report

aflag (G) true in dtstep when heat structures are advance checked in htadv
CPUREM CPU time REMaining 5 elements from input file 105 line.

(1) Terminate transient immediately whenever CPUREM(1) > time remaining on CPU clock for
the run.

(2) Terminate transient after successful time step whenever CPUREM(2) > time remaining on
CPU clock for the run.

(3) CPU time remaining for the run. On input, it is the time allocated for the run. Zero means
no time limit.

(4) > 0 Turn on debug on this attempted advancement.
= 1 Write a dumpfile after advancement CPUREM(5) & quit.
= 2 Same as 1, except don't quit, make 2nd advancement and write a second dumpfile (for
comparison) & quit.

(5) > 0 Terminate code on this advancement.
= 0 Write dump file BEFORE starting transient & terminate.

curtmi CURrent Time for next MInor edit.
curtmj CURrent Time for next MaJor edit.
curtpl CURrent Time for next PLot edit (time card option d = 4
curtrs CURrent Time for next ReStart edit.
curtex CURrent Time for next EXplicit coupling data exchange.
dtadj the adjusted DT (doubled/halved).
dtctr ConTRol DT.
dthyx minimum of new adjusted HYdraulic DT and last time step value of dtX.
dtintv DT INTerVal for minor/plot, major, or restart edits.
dtmax_i DTMAX from I th timecard.
dtmin_i DTMIN from I th timecard.
dtrem time REMaining on cpu clock for this problem.
dtx courant DT.
gt14 Go To statement label 14.

"Repeat time step with old values for dump file" flag. False initially. Set true if cpurei(4)== 2
gt19 Go To statement label 19. set true if succes==2, false if dt<=dtmin_i
gt27 Go To statement label 27. true if cpurem(1)/=0 & dtrem<=cpurem(1) or succes==6 or help<0

& /= 2. Set false initially & when doing output
gt38 Go To statement label 38. help diagnostic step indicator. set true if help<=2.
gt39 Go To statement label 39. set false initially & when doing output set true if done== 7.
gt39a Go To statement label 39 Also.

Move (maybe) & Exit Flag. set true if cpurei(4)>0 & ncount>cpurei(5)
gt100 Go To statement label 100. set true if:

succes == 0
succes == 1 & [iroute == 1 .and. .not.btest(imdctl(1),8)) .or. .not.btest(tsc(it)%tsppac,0)]

gt101 Go To statement label 101. small error time step doubler (if step was halved previously).
set false initially & when .not.gt100 & dt<=dtmin_i & .not.gt19
Set true if succes.le.1 & [iroute.eq.1 .and. .not.btest(imdctl(1),8)) or
.not.btest(tsc(it)%tsppac,0)] and .not.chngno(60)

gtrtn Go To ReTurN statement. true if done/=0
i Index to current time step card.
icard fa index of I th (current) timeCARD.
icoran bin Index to use for COuRANt limit (normally 2).
iecf Integer Edit Control Flag. packed word for minor edits, major edits, & restarts edit control

flag, 4 bits, numbered from right. Also used as a counter in the courant limit calculations.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 29
of 63

Completion Report

Bit 1 (=1) call rstrec for restart edits
Bit 2 (=2) call majout for major edits
Bit 3 (=4) call mirec for minor edits
Bit 4 (=8) call pltrec for plot edits.

iosini Indicator for On line Semi Implicit/Nearly Implicit time advancement method.
iplt temporary storage for iecf.
iprnt PRINT Indicator, local value.
it Index of Time step card
ivskp2 some bits out of print.
j pointer to next timestep card.
last true when LAST advancement for this time step card.
nmon Number of lines to write on MONitor before another label.
numdt NUMber of DTmax steps between timehy and the current edit times (curtmi, curtmj, curtrs).
nwqa pointer to second half of plot file scratch area.
rf Reduction Factor for time step (normally 0.5).
ssdtim Steady State TIMe step.
stsold time for next write to screen.
SUCCES Integer flag indicating SUCCESs of the advancement.

0 no need to repeat advancement with reduced time step
1 excessive truncation error
2 water property error
3 non diagonal matrix
4 metal appears
5 air appearance, velocity flip flop, or water packing advancement with same time step size
6 minimum volume of a variable volume

timeend END of requested TIME step.
timlft TIMe LeFT on this requested time step card, = timeend timehy.

Note that this Table can be very useful when working with older versions of DTSTEP.

6.4.3 Mnemonically rename variables
Some of these variables, particularly the logical ones that started with “gt,” were still unclear as
defined above in terms of logical operations. These were given mnemonic names in Table 5. It is
then clear from the name what the variable means.

Table 5. Mnemonic names for logical variables
Name Mnemonic Name Meaning
gt14 lLoadOldTimeValues Use subroutine MOVER to load old time values into current time arrays
gt19 luserInterface The user interface is activated
gt27 lEditThenQuit Perform all output (plot, minor/major edits, restart) then quit
gt38 lRepeatWSameDt Repeat the advancement using the same timestep (happens when

there is water packing, velocity flip flop, etc.)
gt39 lDoEdits Perform all selected output (among plot, minor/major edits, restart).

Note: Variable iecf hold the selection info.
gt100 lDoMsErrChk Do mass error checking
gt101 lDoubleDt Double the timestep

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 30
of 63

Completion Report

The use of camelback notation, where the first letter of each word in the variable name is
capitalized, helps clarify what the name means at a glance.

Some of the variables initially eliminated were aflag, htimehy, nwqda, nwqdaa, and zeitmi.
Many logical variables were eventually eliminated also.

6.4.4 Fix the Declaration Section
The declaration section was reorganized in three ways. First, all the conditional code marked
with pre compiler directives were put after unconditional code. Second, all integer statements
were pulled together into a groups as were all real, logical, and character statements. Third, the
variables on each declaration statement were alphabetized.

The unconditional declaration section was broken into two parts, the non integer variables, and
the integer variables. Each of these parts had a data dictionary from Tables 4, 5, and 6. The only
exceptions to this subdivision of declaration were references to new modules backmod and
testmod, which were introduced for the integer algorithm and which must occur in the module
section according to ANSI rules of Fortran 95.

6.4.5 New Integer-Algorithm Variables
Table 6 lists the local variables created to implement the integer timestepping.

Table 6. New integer timestepping variables created.
Key: Captialized letters in definition correspond to letters of name

Variable Name Definition
curtmin CURrenT MINimum of 3 time targets: minor & major edits and restart
diff DIFFerence between two quantities.
dtAdjTSave DT ADJusted Time SAVE. Time target for next advancement unless overridden by

Courant, stretch, or unusual time handling.
dtmax_old value of DTMAX from the OLD timecard, initialized to 0.
dtmin_old value of DTMIN from the OLD timecard, initialized to 0.
dtratio DTmax/dtmin RATIO
dtsmallest tsmall from eq. 6b; mnemonic: SMALLEST usable DT.
endInterval END points of timecard INTERVALs starting with the endpoint (which is normally 0).
endold ENDtime from OLD (previous) timecard
endtimecard ENDtime from current TIMECARD
Icardbgn Integer BEGinning time of current 30imecard.
Icard_old Index (fa) of previous time CARD.
Idt Integer timestep corresponding to real DT from eq. 8a.
iduration Integer DURATION of the current timecard.

May differ from floating point duration because of unusual times.
Iedit Integer time target for EDITting (plot, minor, major, rest and possibly message

exchange and end times)
iendtran Integer time target, END of TRANSIENT.
Iendtime Integer time target, END of CURent time interval (card).

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 31
of 63

Completion Report

Inttwo INTeger TWO, 8 byte constant value 2.
Irall Integer to Real difference relative test against dtsmALLest
iredit Integer Relative EDIT times. (minor, plot, major, restart, message exchange)
irtime Integer Relative TIME. IRTIME .eq. ITIME – ICARDBGN.
Itemp Integer TEMPorary variable for calculating intermediate quantities
itime Integer equivalent of cumulative TIME, timehy
Itimecard Index, within endInterval, of the user’s timecard that is in control
kk integer temporary variable for KalKulating intermediate quantities
kNonInt unusual handler linked step number. mnemonic is: Kalculate NON INTeger steps
lstretch Logical STRETCH logic active.
Msgtim MeSsaGe TIMe. Data transmitted via PVM messages.
Nextdtmax NEXT integer multiple of iDTMAX above cumulative time.
Nhalvings Number of HALVingS necessary to reduce the maximum time step to as close as

possible to the minimum w/o going below it.
Ntimecard Number of TIMECARDs
prevAdvTimecard PREVious ADVancement’s TIMECARD ordinal.
supremum the new timestep, which is a halving of dtmax, cannot exceed SUPREMUM.
tyme time (cumulative) calculated from integers.

6.5 New Integer Timestepping Modules
Two new modules were created for integer timestepping for RELAP5 3D DTSTEP. The modules
are summarized in Table 7.

Table 7. New integer timestepping modules
Name Description
Backmod Controls time step selection and frequency of output and plotting edits during transient

advancement.
Testmod Test Matrix Module. Data for logic path input and logic path test processing. Its initial

design is for DTSTEP.

The variables of the Table 7 modules are summarized in Table 7a.

Table 7a. New integer timestepping modules
Name Variable Description
Backmod lBackupOneDt Logical indicator for BACKing UP ONE DT (time step). Important for New

Algorithm 6 – the unusual handler.
.true. means back up was performed in DTSTEP and was not advanced.
.false. means back up was not performed.
It is set in DTSTEP(LoadOldTimeValues subr). Used in TRAN.

Testmod iTestDtstep Controls the Test Matrix Function in RELAP5 3D DTSTEP
1 = force Courant dt halving
2 = force halving of timestep
3 = simulate PVM error condition
4 = force minimal dt

ilowlimit Activate the Test Matrix condition first on this timestep in subr. testDtstep.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 32
of 63

Completion Report

iuplimit Deactivate the Test Matrix condition on this timestep in subr. testDtstep.
testNo In subr. rdbug, the Basic Test Case Number for the DTSTEP Test Matrix.
Aset Test Matrix character strings identifying A set as either A1 or A2.
ctest Complete description of the Basic Test Case to run: (Test#)AABBCCDD

Test# ranges from 1 17
AA ranges from A1 to A2
BB ranges from B1 to B3
CC ranges from C1 to C4
DD ranges from D1 to D7

cbasic Basic Test character identifier. Its values are "a1", "b1", "b2", "c1", "c2",
"d1", "e1", "e2", "e3"

6.6 Internal Subroutines
Twenty internal subroutines were created. Some were abstracted from the code to clarify the
logic flow of the main algorithm of DTSTEP. Others were created to have repeatable, reentrant
code for use with the integer timstepping algorithm or for floating point or PVM message
operations. The subroutines are described in the following table.

Table 7b. New Internal Subroutines
Name Origin Description
astraTscCheck Abstracted This normally inert coding belongs to the IAEA Graphical User Interface

(GUI) known as astra.
doubleDt Abstracted Only after an even number of advancements with the current timestep,

double the floating point timestep and halve variable nrepet, which
controls halving/doubling. (It has conditional experimental non
halving/doubling coding for multiplying by 1.1, but this is almost never
used.)

dthyCalc Abstracted Reach the next floating point edit time target if it is within range if it is no
more than 1.1*dtmax_i away from now, use one step:
 Timecard (or transient) endtime is the ultimate stretch target
 Never bypass the explicit exchange time.
Also calculates some legacy DTSTEP variables that are currently not in
use.

dtoutput Abstracted Perform all code output. Do edits according to the value of variable iecf.
Also do output for interfaces and to the screen.

dtstat Abstracted This coding collects the statistical measures of Figure 3a, section 3
presented by major edits.

dtterm Abstracted This coding collects the termination conditions of Figure 3a, section 2.
dt60select1 Abstracted This belongs to the experimental non halving/doubling coding that is

almost never used and is not part of the integer timestepping.
editTime60 Abstracted This belongs to the experimental non halving/doubling coding that is

almost never used and is not part of the integer timestepping.
exp_cpl_int Abstracted Sends and receives the various types of explicit coupling messages. There

is logic to send the following four types of explicit messages: parallel
synchronous, parallel asynchronous, sequential synchronous and
sequential asynchronous.

findHalving Abstracted This coding implements New Algorithm 5.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 33
of 63

Completion Report

firstEntryOnly Created Implements New Algortithm 1. It creates array endInterval and initializes
it to timecard endtimes. It initializes many new scalar variables for the
integer timestepping.

get800x Abstracted For PVM Explicit messages 8002 through 8005, listen for and receive
PVM Executive's 8000 + x message (x = 2, 3, 4, or 5). This routine was
abstracted from 4 sections of nearly identical code in DTSTEP and reduced
to a single subroutine.
Check if "my task ID" is the SEND task ID in the message.

If so, send my data (if any) to the appropriate task(s) and wait for a
reply. After a reply, possibly send again.
If not, check if this task is to receive data from the SEND task ID. If so,
receive it, store it, and send acknowledgement.

Continue sending and receiving until all required data is sent. Then notify
PVM Executive, data transfer is finished. PVM Executive send 8000 + x
message with sndtid==0 to indicate that message type is finished (and the
"Send or Receive Loop" may be exited).

initTargets Created Subroutine sets integer timestepping variables for the end of timecard
and end of transient.

initIntTime Created Implements New Algorithm 4 and sets t1 to max.
intCardTargets Created Implements New Algorithm 2, 3, and 4 either via direct calculation for

synchronous coupling, or else through calls to updateCardTarget. Also,
calculates integer equivalent to end of previous timecard and end of
current timecard.

intTarg8000 Abstracted This coding collects the Integer target operations conducted in the 8000
section of dtstep, combining elements of New Algorithms 2 and 4. Some
integer time quantity updates are performed only if coupling is
syncronous.

LoadOldTimeValues Abstracted For the case of a code advancement back up, move values from “old
time” arrays, that hold values from the previous advancement, into the
current time arrays.

proc_8000 Abstracted Processes the data associated with the 8000 message from PVMEXEC. It
determines if the message should be exchanged using the check_8000
function from the shared module. If appropriate, the message is
received, the data are unpacked and the acknowledgement message is
sent back to PVMEXEC.

proc_8001 Abstracted Sends the 8001 message with a requested timestep size for
synchronously coupled calculations. The subroutine then receives the
floating point timestep size and the values for curtmi, curtmj and curtpl
from PVMEXEC. New values of iredit are calculated based on the
received edit times.

updateCardTarget Created If edit time has been reached, update edit times using user specified
frequency. This implements New Algorithm 4, Eq. 7b for a single value of
j.

The following internal subroutines were abstracted by moving single entry code and adjusting it
to work correctly as a subroutine:

dthyCalc, dtterm, dtstat, LoadOldTimeValues, doubleDt, dtoutput, editTime60, Abstracted
dt60select1, proc_8000, proc_8001.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 34
of 63

Completion Report

The following internal subroutines were constructed by abstracting coding used in more than
one place to make multiply called reentrant coding:

 findHalving – used in two places to find an acceptable t at or below a target.
 Get800x – abstracted from 4 places to reduce coding into a single efficient routine.

The following internal subroutines were created to implement new integer algorithms or to
incorporate integer algorithm coding. Subroutines dthyCalc and findhalving are listed here
because they implement New Algorithms for integer timestepping.

dthyCalc, firstEntryOnly, initTargets, initIntTime, intCardTargets, updateCardTarget,
findHalving, intTarg8000.

7.0 Implementation in PVMEXEC DTSTEP
The authors of PVMEXEC DTSTEP created it from a copy of the RELAP5 3D DTSTEP subroutine
and adjusted as needed to function as the timestep controlling executive.

7.1 Incorrect vestiges of RELAP5-3D in PVMEXEC DTSTEP
Before the implementation of integer timestepping, PVM DTSTEP, the subroutine was studied
and its functions identified. In the process, it was found that there were many comments,
variables and some legacy code that had nothing to do with the function of the executive and
were not used. Most were vestiges of RELAP5 3D DTSTEP. These confused the conversion to
integer timestepping, development and debugging. There was also the possibility that they
could inadvertently cause errors.

The following describes sections of the PVMEXEC DTSTEP subroutine that were either
unnecessary, too complex, or perhaps incorrect (at least, it did not match the manual). Some
comment statements were misleading or incorrect. Items are presented in the order that the
statements or sections occur in base PVMEXEC DTSTEP, version 2.4.1.2. All were appropriately
corrected as indicated with italicized remarks.

(1) On termination check (pvm_succes==6), DTSTEP does the following:
. set done= 9, iecf=15, gt27=T, go to 27
. set gt27=gtrtn=F, iplt=iecf, skip msgs 8002 8005 processing, gtrtn=T, go to 900
. skip: if gt27==T, go to 27, finally RETURN becase gtrtn==T.
Since nothing is done with iecf, just return after done= 9.

(2) Section "Come here for a good advancement" is overly complex.
Eliminate gt100 and label 801; just "go to 100" instead of 801.

(3) If timestep < minimum, do not stop; rather double timestep & continue
Actual statement: if (dt .le. dt_min(i)) go to 70
This is RELAP5 3D DTSTEP logic, but should be terminal in PVMEXEC.

(4) "Load old time values for halved time step" comment is meaningless.
Comment was removed.

(5) Failure conditions (pvm_success>=2) are checked AFTER timestep doubling.
This should be checked right after termination test (pvm_succes==6)

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 35
of 63

Completion Report

(6) k = pvm_succes 2 unneeded (from RELAP5 3D)
Just compare pvm_succes to 2.

(7) The following comment is meaningless because there is no variable errmax.
“C If errmax is small, double halved time step”
Comment was removed.

(8) Comment "Do requested edits" above statement 27 is misplaced.
What follows 27 is messages 8002 8005 processing. Editing occurs after that the
comment "send global print control to processes"

(9) Section "Finished with this transient?" should be in the advancement above the 8002 8005
section because messages 8002 8005 do not change variable done.

(10) ** At the end of time interval, the last two steps are supposedly equal.
This condition is not enforced UNLESS nrepet==0 (dt==dtmax(i)).
This is not what the manual says.

(11) The following comment is meaningless because there is no Courant limit in the Executive.
“c Set dtx to the minimum of courant, control, and 110% old value.”
Removed comment.

(12) The following comment is meaningless because there is no 105 card in PVMEXEC:
“c Check if advancement is to be terminated by 105 card input.”
Removed comment.

7.2 Definitions, elimination of vestigal variables
During the initial study of PVMEXEC DTSTEP, the variables were studied and defined to help
understand the logic flow. Unnecessary variables and code were marked and eventually
eliminated during the conversion process. Such variables are marked by asterisks in Table 8.

Table 8. PVMEXEC DTSTEP variables with potentially unneeded variables marked
Name Definition
af Amplification Factor for time step (normally = 2.0).
contrl_timestep CONTRoL TIMESTEP
curctl CURrent ConTroLling time step card number
curtex CURrent time target for EXplicit message
curtmi CURrent time target for MInor edit
curtmj CURrent time target for MaJor edit
curtpl CURrent time target for PLots
curtrs CURrent time target for RsStart
done 0 means not DONE, negative values indicate error conditions
dt Delta Time, the current time step.
dtadj the ADJusted DT (doubled/halved).
dtctr ConTRol DT. it is a parameter = 10**75. Could be replaced.
dt_control DT CONTROL information, an array with length n_timesteps, its bits control the time

stepping for each timecard.
dthy HYdraulic DT. minimum of new adj dt and last time step value of dtx.
**dthyx HYdraulic DT eXtra copy. not used. Should be deleted.
**dtht HeaT DT. set but never used. Should be deleted.
**dtintv DT INTeRval for minor/plot, major, or restart edits.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 36
of 63

Completion Report

**dtrem Delta Time (cpu_limit – timehy) REMaining on cpu clock for this problem.
dtx courant DT.
**dtxmdt ?? declared in DTSTEP but not used. Should be removed.
edittime minimum of approaching EDIT TIME targets.
endtime END TIME of current timecard. right endpt of time interval
end_time array of END TIMEs of all the timecards.
**exflag EXplicit FLAG.
exp_cpl_freq FREQuency of EXPlicit CouPLing message exchanges.
fail FAILure indicater. true means code failure; quit.
**flag true if we still need to do some steps to get to dtmax.

** always has value "nrepet.eq.0". Should be replaced.
gt100 Go To 100. true if and only if pvm_succes .eq. 0

At label 100 "if errmax small, double halved time step"
gt101 Go To 101. when true, decrement nrepet.

Label 101 is within the Label 100 section.
**gt14 Go To 14. ALWAYS FALSE and should be removed.
**gt19 Go To 19. true only if pvm_succes .eq. 2.
gt27 Go To 27. true only if pvm_succes .eq.6.

Label 27 starts the "Do requested Edits" section.
**gt38 Go To 38. ALWAYS FALSE and should be removed.
**gt39 Go To 39. ALWAYS FALSE and should be removed.
**gt39a Go To 39. ALWAYS FALSE and should be removed.
gtrtn Go To ReTurN
**help HELP variable from RELAP5 3D. declared in DTSTEP but used nowhere in PVMEXEC.
**htimehy from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
**itimehy from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
**i index to current time step card. Same as curctl.
**icard from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
**icoran from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
iecf packed word for minor edits, plots, major edits, restarts edit control flag, 4 bits,

numbered from right
1 (=1) call rstrec for restart edits
2 (=2) call majout for major edits
3 (=4) call mirec for minor edits
4 (=8) call pltrec for plot edits.

info integer*4, INFOrmation necessary for PVM.
iplt temporary storage for iecf?
**iprnt never used and should be eliminated. local value of print.
**iv from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
**ivskp2 from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
**iwrd8 from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
j pointer to next timestep card.
last true if this is the last adv. for this time step card.
lexplt Logical, EXPLiciT message exchange control
lminor Logical, MINOR edit message exchange control

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 37
of 63

Completion Report

lmajor Logical, MAJOR edit message exchange control
lplot Logical, PLOT message exchange control
lrst Logical, ReSTart message exchange control
**messg from RELAP5 3D, declared in DTSTEP but used nowhere in PVMexec.
mip_freq MInor edit/Plot FREQuency (number of dt_max timesteps major edits.)
mj_freq MaJor edit FREQuency (number of dt_max timesteps between major edits.)
msgtag MeSsaGe TAG for pvm.
**nbyte declared in DTSTEP but used nowhere in PVMexec.
ncount Number or COUNT of time step advancements
nitem integer*4, Number of ITEMs in a message.
**nmechk No Mass Error CHecK, from RELAP5 3D. set but never used and should be removed.
**nmon declared in DTSTEP but not used.
nrepet Number of REPEaTs of current time step to reach next multiple of DTMAX.
**nstsp Set but never used. Should be removed. set to zero and incremented or

decremented but not output or in any test or calculation.)
**nwqa declared in DTSTEP but not used anywhere in PVMexec.
**nwqda declared in DTSTEP but not used anywhere in PVMexec.
**nwqdaa declared in DTSTEP but not used anywhere in PVMexec.
n_exsync Number of EXplicit SYNChronously coupled processes
n_exasync Number of EXplicit ASYNChronously coupled processes
n_excsync Number of EXplicit SYNChronous sequential coupled processes
n_excsync Number of EXplicit ASYNChronous sequential coupled processes
n_proc Number of coupled PROCesses
n_synch Number of SYNChronously coupled processes
n_timesteps Number of TIMESTEP cardS
**numdt integer NUMber of DTmax steps between timehy and the current edit times (curtmi,

curtmj, curtrs). never used. Should be removed.
**prevnd PREVious time step card eND time. Set but never used. Should be removed.
procdt The proposed DT by the synchronously coupled PROCesses
proc_rpt list of PROCesses RePorT statuses

0 not reported
1 reported

proc_sync list of PROCesses coupled SYNChronously
pvmdt PVMexec selected DT = minimum value of all time steps proposed by synchronously

coupled processes.
**pvmint4 INTEGER4
**pvmreal8 REAL8
pvm_succes SUCCESs of the PVM coupled calculation at current step.

0 means continue
1 means running at minimum time step is okay
x for 1 < x < 6 are various time step controls
6 means stop the coupled calculation

rf Reduction Factor for time step (normally 0.5).
rpt_stat RePorT STATus of all processes

0 = not all process reported

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 38
of 63

Completion Report

1 = all processes reported
rst_freq ReSTart FREQuency (number of dt_max timesteps between restarts.)
skipt SKIP certain coding when True (.true. when the calculation is a restart)
sndtid Task IDentification to SeND
stride integer*4, STRIDE (skip factor) through the data.
**stsold declared in DTSTEP but used nowhere in PVMexec.
tid integer*4, Task IDentifier.
timehy cumulative TIME HYdraulic.
**time4 declared but never used.
**timlft time left on this time step card, tpsend(i) timehy. Set but never used. Should be

removed.

Of the variables marked with ** in Table 8 as being potentially unneeded at the early stage of
the project, 34 were eliminated. They are:

dtht, dthyx, dtintv, dtrem, dtxmdt, exflag, flag, gt14, gt19, gt38, gt39, gt39a, help,
htimehy, icard, icoran, iprnt, itimehy, iv, ivskp2, iwrd8, messg, nbyte, nmechk, nmon,
nstsp, numdt, nwqa, nwqda, nwqdaa, prevnd, stsold, time4, timlft

The three, that were kept because they were found to be necessary, are:
i, pvmint4, pvmreal8

7.3 Reworking source code of PVMEXEC DTSTEP
The source code was made more readable by eliminating unused variables and code, inserting a
data dictionary, inserting numerous, outline style comments, and regrouping sections of code.
This aided in the conversion and debugging processes.

7.3.1 Deleted source code from PVMEXEC DTSTEP
Coding that was removed includes:

 All declarations of unused variables that were eliminated in Sec. 7.2
 All statements that used unused variables that were eliminated in Sec. 7.1
 Some code that was unreachable because some logical variables were always false

7.3.2 Declarations in PVMEXEC DTSTEP
The declaration statements were grouped as follows:

 modules in alphabetical order (except for machine)
 other global variables (include statements and common block dtstepc)
 local variables.

Among global and local variables, the declarations are grouped by type; the groups are ordered:
 Real declarations
 Integer declarations
 Logical

Variables were alphabetized on declaration statement to aid in finding them, except for the
common statements which induces an order.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 39
of 63

Completion Report

The local declaration section was further subdivided into original and integer timestepping
variables. The original section was divided into active and eliminated. The declaration of all
variables that were eliminated in Sec. 7.1 were collected and marked as junk. These were later
removed altogether after verifying that they had no impact on code performance.

All unused sections of declarations marked with pre compiler directives were eliminated. These
three sections are:

bufr, cmprs, npa
All declarations of unused variables, those that were marked in Table 7 with asterisks were also
removed.

7.4 Internal documentation in PVMEXEC DTSTEP
An outline style of numbered comments, using the 1, 1.1, 1.1.1, system for subsections was
introduced to break out major sections and progressively minor subsections. Explanations of
operations were expanded from 0 2 lines to whatever amount was deemed necessary to explain
a section to a developer who is completely unfamiliar with DTSTEP. This was helpful in the
development and debugging stages.

During the development and debugging, sometimes the comments became incorrect. Attempts
were made to keep them correct; however, this was not fully successful.

7.4.1 Data dictionary
There are two data dictionaries:

 original variables
 integer timestepping variables.

The variables are listed in alphabetical order with its definition using a capitalization key to
indicate the mnemonics of the name.

The original variable data dictionary was constructed from Table 8. Those variables that are not
marked with asterisks were eventually the only ones remaining in the data dictionary. The
integer timestepping variables data dictionary follows the declaration for the original variables
in DTSTEP.

7.5 Integer Timestepping in PVMEXEC DTSTEP
The implementation involved creating and documenting the new variables for timestepping,
coding the integer timestepping New Algorithms, and breaking out internal subroutines. The
latter is covered in the next section.

7.5.1 Local integer timestepping variables
The new variables introduced to PVMEXEC DTSTEP to implement the integer timestepping are
given in Table 9.

Table 9. Integer Timestepping Local Variables in PVMEXEC DTSTEP
dtsav DT SAVe. Copy of dt made before special timecard endtimes
dt_targ DT TARGet. dt made to handle special timecard endtimes to override pvmdt as

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 40
of 63

Completion Report

requested by coupled codes.
icardkind Integer timeCARD defined frequency of given KIND of edit (plot, restart, etc)
idtsav Integer DT SAVe. Copy of idt made before special timecard endtimes
idt_targ Integer DT TARGet. idt made to handle special timecard endtimes used to override

pvmdt as requested by coupled codes.
iredit Integer Relative EDIT time, E,k of Eq. (8b).
itime Integer cumulative TIME, T/ tsmall.
itmp Integer TeMPorary
itsav Integer Time (cumulative) SAVe. Copy of timehy made before handling special

timecard endtimes
ladd(5) Logical Array of Dump time inDicators. (Not used)

(1) lminor, (2) lplot, (3) lmajor, (4) lrst, (5) lexplt
lBackupOneDt Logical indicator to BACKUP ONE DT (time step).

.true. means do a backup
lrestore Logical RESTORE flag. when TRUE it means that dt and idt are to be restored to

dtsav and idtsav and ovderride the pvmdt requested by the coupled codes.
supremum the new timestep, which is a halving of dtmax, cannot exceed SUPREMUM.
tdiff Time DIFFerence. Difference between floating point time and time calculated from

integers.
tmpmax integer TeMPorary MAXimum used to calculate idtmax.
tsav Time (cumulative) SAVe. Copy of timehy made before handling special timecard

endtimes.
tyme Ti(Y)ME calculated from integers for diagnostics.

7.5.2 Module integer timestepping variables
A new module for integer timestepping variables was created called TARGETMOD. It contains
data for the PVM Executive's integer time targets that specify the following:

(1) End of transient
(2) End of time for the current timecard
(3) Explicit message exchange time
(4) Major edit time
(5) Minor edit time
(6) Plot time
(7) Restart dump time

The module variables are given in Table 10.

Table 10. Integer Timestepping Local Variables in TARGETMOD
dtsmallest SMALLEST allowable value of DT, tsmall from New Algorithm 1, Eq. 6b
endInterval END time of a time INTERVAL (right endpoint).

endInterval(0) = “start time of case”
hitend HIT the END of timecard. true means close enough to hit end by adjusting dt

(compressing or stretching up to 110%)
icardbgn Integer BeGiNning time of current timeCARD in terms of dtsmallest. TC 1/ tsmall.
icardend Integer timecard END time of current CARD in terms of dtsmallest. (TC – TC 1)/ tsmall.
icardtime Integer TIME accumulated since start of current timecard. C,i of Eq. (7).
idt Integer DT, i in New Algorithm 4, Eq. (8a)

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 41
of 63

Completion Report

of Herz or relap5 cycles that equal dt.
idtadj Integer DT ADJustment. Not used (yet)
iduration Integer DURATION of the current timecard = icardend icardbgn.

May differ from floating point duration because of unusual times.
iloc i value LOCating the minimum dt_min among timecards
idtmax Integer largest value of DTMAX.

max = in New Algorithm 1, Eq. (6a)
iedit Integer EDIT time
iendtime Integer END TIME for the entire transient
iexplfrq Integer EXPLicit FReQuency. exp_cpl_freq
iexpltime Integer EXPLicit TIME. relap5 cycle for exchanging explicit coupling data
iloc I value LOCating the minimum dt_min among timecards.
imajorfrq Integer MAJOR FReQuency. mj_freq
imajortime Integer MAJOR TIME. relap5 cycle for next major edit
iminorfrq Integer MINOR FReQuency. mip_freq
iminortime Integer MINOR TIME. relap5 cycle for next minor edit
iplotfrq Integer PLOT FReQuency. mip_freq
iplottime Integer PLOT TIME. relap5 cycle for next plot
irestfrq Integer RESTart FReQuency. rst_freq
iredit Integer Relative EDIT times. These are restarted at the beginning of each timecard.

1 = minor edit, 2= plot, 3= major edit, 4 = restart, 5 = explicit coupling message time
kk integer temporary variable for KalKulating intermediate quantities
nhalvings Number of HALVINGS that reduces DTMAX to dtsmallest.

H in New Algorithm 1, Eq. 6
prevAdvTimecard index among user TIMECARDs of the PREVious ADVancement
spstat SPecial STATus. Indicates status of processing a special endtime.

0 not at an unusual time target, proceed normally.
1 complete final step of an unusual time target; the first step (spstat.eq.2) was

taken on the previous step. Hereafter, time is at a normal halving/doubling
point.

2 timestep exactly reaches unusual time target.
3 (may not be taken) timestep is half the distance to the unusual time target.

iresttime Integer RESTart TIME. relap5 cycle for next restart file write
itime Integer TIME

7.6 Subroutines introduced for restructuring
As with the creation of the PVMEXEC DTSTEP from a copy of the RELAP5 3D DTSTEP subroutine,
the internal subroutines were initially copies of those in RELAP5 3D DTSTEP. They were then
adjusted as needed. This exactly follows the original methodology employed by the authors of
the PVM Coupling coding.

A significant effort was made to restructure the code during the resolution of this issue.
Primarily, this has been accomplished by taking the previous dtstep subroutine and reducing it
to the high level logic path with a significant number of “contained” subroutines. This
restructuring is most noticeable in the PVMEXEC dtstep subroutine. While the restructuring of
the code did not solve any problems, it did provide additional clarity as to the overarching code
logic, which did help in providing a better understanding of the algorithm which ultimately led

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 42
of 63

Completion Report

to a successful implementation of the integer based timestep size selection and advancement
algorithm.

Fourteen internal subroutines were created. Some were abstracted from the code to clarify the
logic flow of the main algorithm of DTSTEP. Others were created to have repeatable, reentrant
code for use with the integer timstepping algorithm or for floating point or PVM message
operations. The subroutines are described in the following table.

Table 7a. New Internal Subroutines
Name Origin Description
firstEntryOnly Created On the very first entry to DTSTEP (and not thereafter), perform

initializations and allocations. Find minimum time step on all timecards.
Differences with RELAP5 3D counterpart, firstEntryOnly:

No endInterval array and fewer initializations.
explicit_async_
parallel_exchange

Abstracted This subroutine determines if this is the appropriate time to perform an
explicit, parallel, asynchronous data exchange between any of the
coupled codes. If it is, each of the codes that should be sending data is
notified. The subroutine then waits for acknowledgement that all of the
receivers have obtained all of their data. Finally, this subroutine sends
the “all clear” message to all of the explicit, asynchronous, parallel
coupled jobs to permit them to resume their calculations.

explicit_async_
seq_exchange

Abstracted This subroutine determines if this is the appropriate time to perform an
explicit, sequential, asynchronous data exchange between any of the
coupled codes. If it is, each of the codes that should be sending data is
notified. The subroutine then waits for acknowledgement that all of the
receivers have obtained all of their data. Finally, this subroutine sends
the “all clear” message to all of the explicit, asynchronous, parallel
coupled jobs to permit them to resume their calculations.

explicit_sync_
parallel_exchange

Abstracted If a simulation includes explicit, synchronous, parallel coupling, each of
the codes that should be sending data is notified. The subroutine then
waits for acknowledgement that all of the receivers have obtained all of
their data. Finally, this subroutine sends the “all clear” message to all of
the explicit, asynchronous, parallel coupled jobs to permit them to
resume their calculations.

explicit_sync_
seq_exchange

Abstracted If a simulation includes explicit, synchronous, sequential coupling, each
of the codes that should be sending data is notified. The subroutine then
waits for acknowledgement that all of the receivers have obtained all of
their data. Finally, this subroutine sends the “all clear” message to all of
the explicit, asynchronous, parallel coupled jobs to permit them to
resume their calculations.

findHalving Abstracted This coding implements New Algorithm 9.
Moved into the shared module, idtmod; see Section 8.0.

intCardTargets Created Subroutine implements New Algorithm 4, by calling subroutine
updateCardTarget five times, once for each type of edit time target.

Differences with RELAP5 3D counterpart, intCardTargets:
This subroutine is extremely simple by comparison, because there are no
special cases for PVM vs. non PVM operations, nor for synchronous vs.
asynchronous.

Differences with RELAP5 3D counterpart, outputInts:

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 43
of 63

Completion Report

This one uses array iredit rather than mnemonically named scalars.
intDtMax Created This function subprogram implements New Algorithm 1.
outputInts Abstracted

Deprecated
Subroutine implements New Algorithm 4, by calling subroutine
updateIntTarg five times, once for each type of edit time target, using
mnemonically named scalars.

Differences with RELAP5 3D counterpart, intCardTargets:
This subroutine is extremely simple by comparison, because
there are no special cases for Pvm vs. non PVM operations, nor
for synchronous vs. asynchronous.

This subroutine was replaced by intCardTargets below.
process_8000 Abstracted This subroutine processes the data associated with 8000 message. It

determines if the message should be exchanged using the check_8000
function from the shared module. If appropriate, the message data are
packed and sent to the appropriate coupled code. The
acknowledgement message for message tag 8000 is also received.

rec_8001 Abstracted This subroutine receives the 8001 message, which contains the
requested timestep size, from each of the codes that are synchronously
coupled.

timeCardInit Created Subroutine called at the end of timecards to implement New Algorithm
2, 3, and 4 in setting up next timecard’s control. It finds dtsmallest from
the next dtmax and dtmin, resets integer timecard time to zero, and
reset all integer time targets.

Differences with RELAP5 3D counterparts, initIntTime &
intCardTargets:

It performs many more initializations than initIntTime. Unlike
IntCardTargets does not call updateCardTarget to initialize time targets;
it also uses mnemonic scalars also for integer time targets.

updateCardTarget Created If edit time has been reached, update edit times using user specified
frequency (RELAP5 3D Manual Volume 2, Appendix A). This implements
New Algorithm 4, Eq. (8b) for a single value of j. Also implements the
110% stretch logic of Sec. 5.4.

Differences with RELAP5 3D counterpart, updateCardTarget:
The user specified frequency can be zero; so there is special coding to
handle that. Also, the stretch logic is not present in the counterpart.

updateIntTarg Created
Deprecated

Subroutine implements New Algorithm 4, Eq. (8b) for one value of j. It
converts a timecard edit frequency (RELAP5 3D Manual Volume 2,
Appendix A) to an integer frequency, ifreq, carefully.

Differences with RELAP5 3D counterpart, updateCardTarget:
It performs the rounding conversion that RELAP5 3D DTSTEP
internal subroutine intCardTargets does in addition to the
minimization adjustment of updateCardTarget.

This subroutine was replaced by updateCardTarget below.

Among these subroutines, most were created specifically to implement the integer algorithm.

8.0 Shared Module - idtmod
The PVMEXEC and RELAP5 3D computer programs both have similar tasks associated with the
selection of timestep sizes to hit certain specified communication points. However, many

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 44
of 63

Completion Report

different routines or techniques were used to perform the same task. The use of different
implementations of what should have been the same logic created scenarios where the
inconsistencies, while maybe minor (including different order of arithmetic issues), were
sufficient to preclude proper execution of the problems. To remedy this, a shared module,
idtmod, was created. This module contains both data and sub programs that are needed by
both PVMEXEC and RELAP5 3D.

A number of quantities and functions are exactly the same between the two subroutines R
DTSTEP and P DTSTEP. Many variables and utility subroutines were identified, renamed to be
consistent between the DTSTEP subroutines, and collected into the shared module.

8.1 Data
The shared module has been developed to contain a small amount of data that is needed by the
integer based algorithm. The variables that are included in the module are detailed in Table 11.

Table 11. Integer Timestepping Local Variables in TARGETMOD
Logicals
exp_cpl Specify if EXPlicit CouPLing is active
ldbg Logical DeBuG flag. When true, it activates additional debug print statements

Integers
i8kind Integer 8 byte KIND. Specifies 64 bit integer values as need by the algorithm
qdkind QuaD precision KIND. Specifies 128 bit floating point values
dpkind Double Precision KIND. Specifies 64 bit floating point values
dbgf DeBuG File. The unit number used for the debug print statement
idt Integer Delta T. Representation of the timestep size. For normal timesteps,

dt=idt*dtsmallest
idtmax Integer DT MAXimum. Integer representation of the maximum timestep size
itime Integer cumulative TIME. Integer counter for elapsed time
iendtime Integer END TIME of the timecard.
iendtran Integer END of TRANsient. Integer representation of the transient end time
icardbgn Integer timeCARD BeGiN time. Integer representation for the start time of the

current timecard
icardend Integer timeCARD END time. Integer representation for the time equal to the end of

the current time card
irtime Integer Relative TIME. Integer representation of time elapsed from start of current

timecard
iduration Integer DURATION. number of timestep of size dtsmallest in the current time card
iredit(5) Integer Representation of EDIT times
iedit Integer representing the nearest EDIT point

Extended Precision Reals (128 bit floating point)
qdtsmallest QuaD precision SMALLEST attainable DT. Floating point timestep size that is greater

than DTMIN and is determined via Eq (1)

Reals (64 bit floating point)

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 45
of 63

Completion Report

dtsmallest SMALLEST attainable DT. Smallest floating point timestep size that is greater than
DTMIN and is determined via Eq (1)

af Amplification Factor. Factor that is used to increase the timestep size.
rf Reduction Factor. Factor that is used to reduce the timestep size
dtadj DT ADJustment.
curtmi CURrenT next MInor edit time
curtmj CURrenT next MAjor edit time
curtpl CURrenT next PLot time
curtrs CURrenT next ReStart time
endtime problem END TIME
edittime the next EDIT TIME target (of any kind, major, minor, etc.)
dtlimit DT upper LIMIT based on error mitigation
dtsmallest SMALLEST attainable DT. The smallest timestep size that is greater than DTMIN and

is determined via Eq (1)

8.2 Module Internal Subprograms
These subroutines were abstracted from R DTSTEP and/or P DTSTEP. They were modified to
work appropriately for both, such as adding a starting point to subroutine findhalving. In some
cases, further improvements were made in resolving user problems, such as adding the creation
of qdtsmallest to mkdtsmall. These subroutines were then unneeded in R DTSTEP and P DTSTEP
and were removed.

Table 12. Integer Timestepping Local Variables in TARGETMOD
calctimehy real function Implements New Algorithm 3 to calculate the time given an integer

value of time relative to the beginning of the timestep card.
check8000 Logical function Determines if the 8000 message needs to be exchanged.
findhalving Subroutine Implements New Algorithm 9 to find the largest timestep size smaller

than a given the value (provided in the calling sequence) by
successively halving a starting value. The start value may be TMAX or
an unusual timestep size.

isnormaldt Logical function Applies New Algorithms 7 and 8 to determine if the current timestep
size is normal. A timestep is declared to be normal if the floating
point value of the timestep size and the value that is calculated using
Eq (1) differ by no more than 10 10 seconds.

makeconsistent Subroutine Applies New Algorithm 5 to reset the floating point representation of
both the timestep size (dt) and the time (timehy) based on their
integer equivalents for normal timestep sizes.

mkdtsmall Subroutine Implements New Algorithms 1 and 2 to calculate the variables
dtsmallest and qdtsmallest based on the DTMIN and DTMAX.

movedtdat Subroutine This subroutine is used to advance or reduce both the floating point
value of time (timehy) and the integer representation of time (irtime).
If the timestep is normal, the code alters the integer representation
of time and then uses the calctimehy function to calculate timehy. If
the timestep size is unusual, the value of timehy is modified and the
integer representation of the new time is calculated using the

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 46
of 63

Completion Report

time2int function.
time2int Integer

function
Applies New Algorithm 4 to calculate the integer representation of a
floating point value of time. The returned value is relative to the
beginning of the timestep card.

Handling this module during maintenance and installation introduces a new nuance. It is a huge
maintenance difficulty to maintain copies of the same file in two directories because eventually
one copy or the other is changed without the other. The use of a Unix or Linux link can mitigate
the issue; however, links can be broken. It is better to have just one file.

With the decision to retain just one copy of module idtmod, the installation process was
affected. The module can reside in either the RELAP or the PVMEXEC directory, but not both.
During installation, either linking or copying could provide the other directory with the files it
needs. This was implemented.

9.0 Development and Debugging
The elements of integer timestepping described in Sections 2, 3, and 4 were developed early,
while those in Section 5 were developed during the development. Similarly, all internal
subroutines and most new variable names were created during the development process.

Development was performed in small increments because of the requirement to not change
answers (except for correcting errors and for slightly improved time tracking). It was found that
when numerous conversions were made, the likelihood of altering calculations increased.
Therefore, changes were introduced in small groups, sometimes as small as three or four
statements. After introducing changes, the complete set of standard installation problems,
including PVM problems were rerun and compared against the base code output.

Eventually, the integer timestepping results began to differ slightly from the original due to
more accurate time tracking. From this point onward, a second base case was established and
output from developmental code was compared against it. This occurred and was repeated
several times in the development process. This process is summarized as .

Incremental Development Strategy
1. Develop means to implement small, independent change
2. Code the few changes
3. Run all test cases
4. Compare results
5. If differences are found, decide if there is an error, or improved accuracy

a. If error, determine source and return to 1.
b. Otherwise, done

9.1 Development Issues
The two issues causing the greatest challenge to development were:

1. The problem of finding a suitable coding expression for an integer concept
2. Control coding

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 47
of 63

Completion Report

The issue of finding a suitable expression of an integer concept in coding is not new. It happens
that coding something one way causes an error in one or more test cases, but that an
alternative programming equivalent set of coding runs correctly. This is sometimes revealed by
placing the RELAP5 code on another platform and running the test set, but more often occurs on
the developmental platform. The former is a well known problem caused by differences in
compilers, different release levels of the same compiler, math libraries and other operating
system differences, and even in PVM interaction with the operating system level. The latter is
caused by glitches in the compiler and in PVM interaction with the operating system.

The result is that implementation of the integer concepts was often not as straightforward as it
would seem. For example, the ans79.i test problem uses huge timesteps. This caused New
Algorithm 1 to fail when 32 bit integers were used, but once this was traced and understood,
the problem worked properly when 64 bit integers were used. Other examples include the form
of integer if tests and the updating of time targets.

The second development issue is control coding. In many places, the means of updating time
related quantities was dependent upon whether RELAP or PVMEXEC was in control, or when
PVM was in control, the kind of coupling was in use, particularly synchronous vs. asynchronous.
In some places it was necessary to completely separate the control code on these bases, and in
others it was not. For clarity, consistency and efficiency of coding though, redundancy is
undesirable. Control coding required numerous reworkings for this reason.

Finally, Parallel Virtual Machine (PVM) exhibits different behavior on different platforms. These
failures were caused by the inability of the operating system to obtain a PVM daemon when
requested, which mostly occurred if PVM jobs were run in succession in a script. This made it
appear that PVM test cases were failing when they were not and a rerun would actually work.
Optional “permission to terminate” source coding was created to address this and PVM scripts
had “post run” delays and other correction coding added. These devices reduced but did not
completely eliminate the problem.

9.2 Testing and Debugging
In order to assess the correctness of the integer time stepping, implementation the existing set
of test cases was augmented considerably of the transmittal set. An initial problem, time8, with
8 timecards that tested different aspects of timecard handling by RELAP5 3D run under
PVMEXEC control was the first addition. Input files associated with User Trouble Reports (UTR)
were also added; this included some problems that mimicked actual UTR when the original input
files were unavailable. Some special cases, designed by Dr. Walter Weaver, that create and test
failure handling in coupled problems were also incorporated. Finally, a huge test matrix that
tests every kind of coupling and many other aspects of coupled calculations was constructed.

The so called Weaver test set is presented in Section 8.2.1, the tests related to UTE in 8.2.2, and
the so called DTSTEP Test Matrix comprises Section 9.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 48
of 63

Completion Report

9.3 Debugging: The Weaver test set
The so called Weaver test set consists of 9 test cases designed to check various combinations of
the DTSTEP time step repeat logic and the ability of the code to detect errors and shut down
without creating a hung machine condition.

Code modifications were necessary in subroutines VFINL and TRAN. The coding necessary for
these tests is marked with pre compiler directives testpvm1 through testpvm9. The entire
RELAP5 3D code must be recompiled separately for each test case. This is automated in the
controlling Linux script named RUNW.

No errors were found in DTSTEP as a result of these tests.

9.4 The TestDt Tests
The next group of tests had two components: available DTSTEP UTR input and the attempted
recreations of unavailable UTR input. These input models are located in the run/TestDt directory
of the RELAP5 3D source distribution. The Linux script created to run the test set is named
runv_dt. The problems are listed in Table 11.

Note that files in Table 11 with the “ii” extension are the name of the PVMEXEC master input
file; there are matched input files for the RELAP5 3D processes that the executive spawns. These
input file names start the same but differ on the last letter; their extension is “i.” For example,
time8.ii spawns a process whose input file is time8p.i.

All available models in Table 11 ran with version R3D244B. Although input pvmcore6_20x.ii,
unusual.i, and r5_melcorx.ii helped pinpoint errors in the implementation and eventually ran,
other recreations failed to reproduce the reported behavior after repeated modifications and
were thus unsuccessful in advancing the debugging and testing process.

The pvmcore6_20x.ii problem has 6 connection between master and slave in a semi implicit
coupling was of interest for both the impact of FORTRAN 95 conversion, a simultaneous project
that was in its final stages, and for the ability of the BPLU solver to handle that many
connections. It was used to help solve a RELAP5 3D/MELCOR coupling error wherein the restart
at 10 seconds did not output the same values that the continuous run to 20 seconds had.

Table 13. TestDt input models for debugging unavailable input models
Name Description

Section 1 Available/Extended input models
ed_UP04028.i Input model for User Problem 04028
vhtr03009.i Input model for User Problem 03009
time8a.i i A fast running version of time8.i
time8.ii The original 8 timecard input model described in Sec. 8.2
unusual.i A fast running problem with a 4 different challenging unusual time issues

Section 2 User Trouble Report mock ups
r5_melcorex.ii Attempt to recreate the RELAP5 MELCOR problems reported in July 2009

Slave process input: r5_melcoreb1.i, and r5_melcoreb2.i
r5_cobra1109x.i Attempt to recreate a RELAP5 3D coupled to COBRA calculation that hangs at 1107

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 49
of 63

Completion Report

sec
Restart2ndx.ii Attempt to recreate the problem with a restart of a restart of a coupled calculation

from an unavailable UTR
pvmcore6x_20.ii
pvmcore6x.ii
pvmcore6xr.ii

Semi implicit coupling input model with 6 coupling junctions. The “6x” file runs from
0 to 10 seconds; the “6xr” file restarts at 10 seconds and runs to 20; the “6x_20” file
runs from 0 to 20.

The input set comprised of r5_melcorex.ii, r5_melcoreb1.i, and r5_melcoreb2.i was useful in
identifying an error in the coupling of RELAP5 3D to MELCOR involving a non positive timestep.

Unusual.i was created to severely test the unusual timestep handler, New Algorithm 6, and it
revealed some problems that were also corrected.

9.5 The Proprietary Tests
In order to provide an algorithm with the required level of robustness, a comprehensive test
program was required. This test program consisted of a suite of proprietary problems that
either expressed algorithmic failures in previous versions of the algorithm or problems that had
been designed to test specific features in the algorithm. During the development process, new
failure mechanisms in the algorithm were discovered, these proprietary problems were then
added to the test suite. These problems are not available for distribution but played a
fundamental role in debugging RELAP5 3D.

Every version of the algorithm that was developed was tested against the entire test suite, as it
existed at the time. A checklist was developed and used for each test version. A sample
checklist is included as Table 1. The checklist recorded the compilation date and time for both
the RELAP5 3D and PVMEXEC executable. This information was recorded to permit
reproducibility of the results, if desired.

Another unique aspect of this development effort was that every version of the files containing
the shared module idtmod and the dtstep subroutine, for both RELAP5 3D and PVMEXEC
programs, were automatically saved in a repository immediately following the creation of
executables. This process made it possible to recreate the source code that was used for any
test version of the code and provided the ability to quickly identify the changes that either
solved or created problems with the algorithm.

The final version of the test suite included several smaller test suites which included:
 The DTSTEP Test Matrix (Section 10)
 The proprietary installation problems (verify)

o A test suite of 204 different problems executing RELAP5 3D as a standalone
program.

 The Weaver Failure Tests (Sec. 9.3)
 A suite of restart problems that couple RELAP5 3D and COBRA IE (cobra_restart)

This is a suite of problems that is used to make sure that coupled problems can be
restarted during the solution process without altering the solution. This test suite

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 50
of 63

Completion Report

consists of a base case and then 5 different restart cases. Each of the restart cases
starts from the previous restart case and the results are compared to ensure that
results are the same to machine precision.

 A collection of 5 different User problems (User1 – User5)
These problems represent specific problems that were uncovered in the algorithm
at various points in the development process. These problems were long running
jobs, with the longest taking over 4 days to reach the point of failure.

A checklist for running this collection of test suites was developed. An example is shown in Table
20 in Appendix A.

10.0 The DTSTEP Test Matrix
The DTSTEP Test Matrix was was designed as a huge collection of test cases that would exercise
every set of important conditions and relevant paths through RELAP5 3D DTSTEP (R DTSTEP) for
coupled problems. Developed simultaneously with the debugging methods of Sections 8.2
through 8.4, it was designed to systematically test each mode of coupling on all known
important failure mechanisms. The design is given in Sec. 9.1. The 199 debug card design is in
Sec 9.2. Subroutines created to implement it are given in Sec. 9.3. The modifications to existing
subroutines in reported in Sec 9.4. The large collection of scripts that run it are described in Sec.
9.5. The input models, including the newly created ones, are described in Sec 9.6. The debugging
effort is reported in Sec. 9.7.

10.1 Test Matrix Design
The Test Matrix is comprised of 2856 separate test cases, each testing a combination of logic
paths through the code that have generated PVM coupling errors. The test matrix is divided into
five packages of test cases; each addresses a different aspect of the DTSTEP. Each contains two
or more copies of the next smaller package applied differently. The packages are shown in Table
12 along with the number of separate tests in each package.

Table 14. Test Matrix levels of testing DTSTEP
Name Description # tests
Basic Test special timestepping conditions (halving/doubling/repeating) and failures 17
Package A Vary the kind of timestep size with Basic Group 34
Package B Vary Time Target when it is applied on Group A 102
Package C Vary type of time target: Normal, unusual, sequence, every step on Group B 408
Package D The 7 PVM coupling modes on Group C 2856

An example would be a test that repeats the timestep (Basic) when dt is minimal (package A) at
a plot pt. (package B) that is an unusual time (package C) in semi implicit coupling (package D).

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 51
of 63

Completion Report

The Basic Set is comprised of simple conditions that are known to have caused failures in
existing PVM coupled input models. There are single condition tests (designated a1 through e3)
and tests comprised of combinations of single conditions. These are summarized in Table 13.

Table 15. The 17 Basic Tests of the DTSTEP Test Matrix
Test
Designation

Test
Number

Description

a. Repeat Only (Note: These all travel the same logic path through RELAP5 3D DTSTEP.)
a1. 1 succes=5 (Air appearance, velocity flip flop, water packing)
b. Reduction Only (halving)
b1. 2 Exceed Material Courant Limit (MCL)
b2. 3 PVM transmits reduced step
c. Repeat with Reduction
c1. 4 succes=1, Excessive Mass error
c2. 5 succes=2, Thermodynamic property failure
d. Amplification (doubling)
d1. 6 MCL and mass error check
e. Code Termination for FAILURE condition
e1. 7 fail==.true.
e2. 8 Variable volume minimum size (succes=6)
e3. 9 Executive: pvmerr /= 0
Combinations Conditions occurring on successive steps
a1 b1 10 a1 then b1
a1 b2 11 a1 then b2
a1 c1 12 a1 then c1
a1 c2 13 a1 then c2
a1 b1 d1 14 a1 then b1 then d1
a1 b2 d1 15 a1 then b2 then d1
a1 c1 d1 16 a1 then c1 then d1
a1 c2 d1 17 a1 then c2 then d1

10.1.1 Package A Timestep Sizes (34 tests)
Package A applies the Basic Set twice, once with a normal sized step, and once with tsmall. The
two instances of the Basic set are named A1 and A2. Thus,

 A1 Basic set (9) and 8 Combinations at non minimal time step
 A2 Basic set (9) and 8 Combinations at minimal time step

10.1.2 Package B Time Targets (102 tests)
Package B applies package A thrice, once at a minor edit, then at an explicit exchange time, and
at the end of transient. The instances of Package A are named B1, B2 and B3. Thus,

 B1 Package A tested at/near minor edit time (represents plot/major/restart edits)
 B2 (where applicable) Package A tested at/near message exchange time
 B3 Package A tested at/near Transient end

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 52
of 63

Completion Report

10.1.3 Package C Normal/Unusual Time (408 tests)
Package C applies package B four times, once at multiple of DTMAX, then at an unusual time, at
a sequence of normal and unusual targets, and at every timestep. The instances of Package B
are named C1, C2, C3 and C4. Thus,

 C1 Package B: Time targets are integer multiples of DTMAX
 C2 Package B: Time targets are unusual (non integer multiples of DTMAX)
 C3 Package B: normal target, followed by unusual, followed by normal
 C4 Package B: Targets specified at every step via RELAP5 3D or Executive.

10.1.4 Package D Coupling Configurations (2856 tests)
Package D applies package C seven times, as indicated in the bullets. The instances of Package C
are numbered D1, through D7. Thus,

 D1 Stand alone RELAP5 3D
 D2 Explicit Asynchronous coupling RELAP5 3D/Relap5 3D
 D3 Semi implicit Synchronous coupling RELAP5 3D/Relap5 3D
 D4 Simultaneous coupling (Explicit Asynchronous and Semi implicit Synchronous)

RELAP5 3D/Relap5 3D/RELAP5 3D
 D5 Explicit Synchronous coupling RELAP5 3D/Relap5 3D
 D6 Explicit Asynchronous coupling RELAP5 3D/Relap5 3D with 1st as leader
 D7 Synchronous single RELAP5 3D controlled by Executive

Note that there are somewhat fewer tests than the upper limit of 2856 tests in the matrix. For
instance, asynchronous coupling implies no testing of Basic Test b2 and that there can be no
testing of sub package B2 with semi implicit coupling, D4. There are other combinations that
make no sense to test as well. The run scripts prevent non sensical cases from being run; see
Sec. 9.4.

The designation of a single case within the DTSTEP Test Matrix is unique. It is named according
to its groupings, from largest package to smallest. The format of every case is:

Dv Cw Bx Ay CASE z
An example is D2 C4 B3 A2 CASE 10 indicates that the case tests asynchronous coupling with
minor edits output every time step wherein air appearance followed by a violation of the
material Courant limit occurs just at the end of the transient. The subroutines described in Sec.
9.3 9.5 use no spaces in the naming the cases. E.G. DvCwBxAyCASEz

The test matrix is designed to take a single input model, one from each coupling configuration in
Package D, and modify it to apply the specifications of the other packages to the input deck to
create an altered deck that exactly defines the test to RELAP5 3D. Modifications to the input
deck are made by scripts and include the addition of the new 199 debug card; the subroutines
convert the input into logic flowpath control.

10.2 The 199 debug card
Part of the Test Matrix design is a new input card, number 199, contains information about
which subroutine to test, what to test, and when to test it. However, the 199 card is designed to
be a generic system for creating user controlled debug information for use ANYWHERE in
RELAP5 3D.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 53
of 63

Completion Report

The Generic 199 card is a standard RELAP5 3D input card. Its format is:
199 Word1 Word2 Word3 Word 4
 Word 1 A character string that names a subroutine (group) to debug
 Word 2 A keyword that indicates what aspect to debug
 Word 3 A number indicating the advancement to activate the debugging
 Word 4 A number indicating the advancement to terminate the debugging

The 199 card is limited to DTSTEP debugging currently. Therefore, Word 1 must be DTSTEP and
Word 2 must be a basic case number, z, followed by package A subset indicator, either A1 or A2.
Thus the 199 card Word 2 must have the form zAy. The 199 format is:

199 DTSTEP "zAy" T1 T2

where 1 z 17, 1 y 2, and the test activates on advancement T1 and terminates on T2. By
choosing T1 and T2 properly, the time target aspect controlled by package B is incorporated into
the test case.

Thus, the 199 card creates the aspects of the test case controlled by packages B, A, and Basic,
but not packages C and D; those are controlled by the scripts. Exercising the specified Test
Matrix case is left to the new Test Matrix subroutines.

10.3 The new Test Matrix subroutines
Two subroutines, with 4 internal subroutines, were created to implement the DTSTEP Test
Matrix; they are described in Table 14. Module Testmod carries the data created by the input
one to the transient routine. Testmod is described in Sec 6.4.4 in Tables 6 and 6a.

Table 16. Subroutines created to implement the DTSTEP Test Matrix
Major Subroutine Description
rdebug Read user control debug data from 199 card, check it and print diagnostics for for

incorrect form or data. Interpret data as Table 13 “Test Designation” (with no
dashes) in Testmod variable ctest.

testDtstep Create tests of various logic paths through DTSTEP for the DTSTEP Test Matrix by
interpreting ctest and setting variables cpurei(4:5), done, errmax, fail, success,
and/or iTestDtstep appropriately on the user designated timesteps only.

Internal Subroutine Within testDtstep
basicSet Sets DTSTEP variables to implement test from Table 13 “Test Designation”
combine1_4 Sets DTSTEP variables to implement test of Table 13 first 4 combinations.
combine5_8 Sets DTSTEP variables to implement test of Table 13 2nd 4 combinations.
packageA_set Conditionally calls subroutines basicSet, combine1_4, or combine5_8.

The new subroutines are internally documented. Except for a few local variables, every variable
used by them is listed in the preceding Tables of variables.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 54
of 63

Completion Report

10.4 Updates in support of the Test Matrix
Subroutine RNEWP was adjusted to call RDEBUG. Two RELAP5 3D subroutines TRAN and DTSTEP
were modified to implement the Test Matrix in the transient. Both access the data in Testmod
to activate the tests. Three more subroutines were modified after version r3d244b to identify
lapses in writing major/minor/restart edits in Test Matrix output files automatically. A protocol
to reduce PVM daemon acquisition errors was installed in PVMEXEC TRAN and RELAP5 TRNCTL.

In RELAP5 3D TRAN, the Test Matrix is activated by a call to testDtstep just above the coding for
the first Weaver Test, marked testpvm1; see Sec. 8.3 above. It is called again just prior to the call
to DTSTEP. Both calls occur in coding marked with pre compiler directive pvmcoupl so that it can
be removed for most client groups.

In RELAP5 3D DTSTEP, the coding is implemented with if tests on variable iTestDtstep. All these
if tests are also marked with pre compiler directive pvmcoupl. The implementation in DTSTEP is
described in Table 15.

Table 17. Implementation of Test Matrix basic tests within RELAP5 DTSTEP
iTestDtstep Description Implementation in RELAP5 3D DTSTEP
1 Exceed Courant limit Forced by setting dtx to the larger of tsmall and 0.9x ti+1 in Sec.

10.3 of DTSTEP
2 Halving dt Forced by resetting dt=dt/2 in DTSTEP Sec 11.1 (synchronous

coupling only) just before the proposed dt is sent to PVMEXEC.
This is necessary so that PVMEXEC has same dt.

3 PVM error condition Forced by setting pvmerr=1 in four places: in initialization,
within IntTarg8000, in Sections 2.3 and 7.1 of DTSTEP. This is
necessary to avoid creating a machine hang.

4 Minimal step size Forced by setting dtx to twice dtmin in Sec 10.3 of DTSTEP

In order to verify that the major, minor, and restart edits are occurring as they should, coding
was added to count the number of each, and to output those values with each message about
the appropriate edits in the “printed output” file. These changes occur in MAJOUT, MIREC, and
RSTREC. Even then, the scripts automate the process of checking the values for correctness.

A common problem related to running numerous successive PVM jobs was failure to obtain a
PVM daemon to start running a job. This would occur when the Test Matrix was run. To
overcome this, an optional “permission to terminate” (also called “Mother may I”) protocol with
PVM was developed. The message tag is 8100.

Just before the return statement in TRNCTL of RELAP5 3D, an 8100 message is sent to the
Executive. This is followed by a PVM Receive statement. The process cannot terminate until
either an 8100 message from PVMEXEC TRAN arrives, or the wait time is exceeded. The
executive has a receive loop similar to an 8005 message tag in TRAN and only after all processes
have requested termination may the executive broadcast the terminate message to all. If one of
the child processes fails, the PVM Executive wait time will be exceeded and the normal error
message will be written from the main program.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 55
of 63

Completion Report

10.5 The New Scripts
A large set of Linux scripts was created to organize, set up, run, and check the DTSTEP Test
Matrix. These are summarized in Table 16.

Table 18. The new scripts that operate the DTSTEP Test Matrix
Script Name Function Calls Called by
base17 Run 17 basic test cases of DTSTEP in sequence.

Its 4 call arguments describe the choice of D coupling, C
kind, B target, and A dt size

mk199card
settimecards
testsuccess

packageA

BasicCase The centerpiece of the scripting system. Given the 5
numbers that describe a test, it selects the input model
template and prepares the executive input file, makes
copies of the slave process input files, adding a debug card,
and modifying their time cards. It also runs the code,
examines the output and determines if it is satisfactory
before cleaning up and renaming the output for later
manual examination. BasicCase can be run manually for
any of the test matrix’s 2856 cases.

checkCase
mk199card
settimecards
testsuccess
pvmexec.x
relap5.x

base17

CheckCase Determine if a case makes sense to run. Return with status
flag 1 if the Basic Case makes no sense to run. Also display
a message explaining why.

none BasicCase

editCount Counts the number of restart, major, and minor edits in
the RELAP5 3D output file.

None BasicCase

mk199card Creates the 199 debug card to append to the end of a
RELAP5 3D input deck that implements the test specified
by packages B, A and BasicCase (time, dt size and basic
case number)

BasicCase

packageD Run all 2856 problems of the DTSTEP Test Matrix by calling
packageC for all 7 types of coupling tests. Stores the
results in a log file.

packageC runTest

packageC Runs 408 test cases by calling packageB for 4 kinds of time
targets (normal, unusual, combo, every step).

packageB packageD

packageB Runs 102 test cases by calling packageA for 3 target types
(plot, exchange, transient end)

packageA packageC

packageA Run the 34 basic test cases for the conditions of A1 and A2
for a normal and smallest time step respectively.

base17 packageB

rerun Finds and reruns all Test Matrix cases that ran and
produced the result “Unsatisfactory.”

Creates
reRunTest

none

runTest Set up the DTSTEP Test Matrix, making certain that the
RELAP5 3D, PVMEXEC, and pvmcatchout executables and
all the fluid property files are accessible. Also deletes all
output files from any previous Test Matrix run in the
directory.

packageD ../runT

../runT Runs the DTSTEP Test Matrix and DTSTEP Extra problems.
Checks first that the code was installed with PVM on.
The log file defaults to the date followed by _TM.

runTest
(Test Matrix)
runv_dt
(of Sec. 8.4)

None

seek Checks that a single success value occurred in at least once
in a group of files.

None testsuccess

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 56
of 63

Completion Report

settimecards Creates timecards that implement the test called for by
packages B, C, and D.

None BasicCase

testsuccess Compares the output of a run of the PVM Executive (or
RELAP5 3D in the case of set D1) against the expected final
message.

seek BasicCase

All scripts in Table 16 are located in the TestMatrixDt subdirectory of the ”run” directory, except
runT which is located in “run.” More complete testing is available by running runT from the
“run” directory of RELAP5 3D; this will run all test cases listed in Sec. 8.4 and the Test Matrix.

As described in an earlier Section, the 199 card does not communicate the D and C level
aspects of a Test Matrix test case. These are introduced by two mechanisms. Script settimecards
of Table 15 modifies the timecards of an input deck to implement the C level control. BasicCase
selects the input deck that corresponds to the D level coupling of the specific test case.

10.6 The Input Models
Simple input models are used as the basis for all tests of a particular kind of D level coupling.
The input models are given in Table 17.

Table 199. Test Matrix base input tests, the models and their sets of input files
D level Base Input

File
Other input files of
base set

Description

1 edhtrk.i RELAP5 3D standalone. Edward’s pipe model (with
extras). Reference [c].

2 pvmedax.ii pvmedac.i – child
pvmedap.i – parent

Asynchronous explicit coupling test case.
Edward's pipe

3 pvmcore pvmcorep.i – primary
pvmcorec.i – core

Semi implicit (synchronous) coupling
Christensen model

4 pvm3way pvm3wayp.i – primary
pvm3wayc.i – core
pvm3wayb.i – bypass

Semi implicit (primary to core) AND explicit
asynchronous (primary to bypass) coupling
Christensen model. Reference [d].

5 pvmedspx.ii pvmedsc.i – child
pvmedsp.i – parent

Synchronous explicit coupling
Edward's pipe

6 pvmeds10x.ii pvmeds10f.i – follower
pvmeds10l.i – leader

Asynchronous explicit conserving
Edward's pipe

7 pvmvesselx.i pvmvesselp.i Executive oversees single RELAP5 3D running a full
Christensen vessel model

There are only two basic input models, one based on the Edward’s blowdown test, and the
other based on the Christensen vessel model. These problems are simple and fast running as
compared with, for example, a full plant model or the standard Typical PWR model that has
serious modeling deficiencies that cause many code failures. There are two reasons for this.

The first reason is time; there are 2856 test cases and the time to run the full Test Matrix, at the
time, was 2.5 to 4 hours, depending on the computer platform. Changing from Edward’s pipe
that runs in a few seconds to a problem that runs in minutes or longer would make the Test
Matrix too slow for debugging purposes. Increasing the runtime of the base input models by

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 57
of 63

Completion Report

using something that took a minute to run would increase runtime by a factor of 20 or more and
increase Test Matrix runtime from 4 hours to 4 days. This was unacceptable as the test matrix
was run hundreds of times during the course of testing and debugging.

The second reason is failures. The PVM system would fail by itself for various reasons including
inability to get a PVM daemon, required failures (basic cases 7, 8, and 9), and DTSTEP bugs.
Simple, stable models were needed to identify these errors. Errors in other parts of the code
that may or may not have originated from coding bugs in one of the DTSTEP programs would
only complicate and further lengthen the overall debugging process.

10.6.1 The New Input Model
To perform coupling tests in the D4 category, a new simple test problem was required. This was
made by decomposing the “pvmcore” problem so that a portion of the core was connected to
the primary part of the vessel (including the rest of the core) semi implicitly, while the bypass
was connected to the primary explicitly.

The new problem is called “pvm3way” and a nodding diagram is given in Figure 5.

Figure 5. PVM3WAY Nodalization Diagram.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 58
of 63

Completion Report

11.0 Supporting Changes in Existing Coding
This Section provides a brief summary of the existing subroutines in both RELKAP5 3D and
PVMEXEC that were modified to implement the integer timestep algorithm and in support of
debugging the coding.

Subroutine pvmfxrec within RELAP5 3D was changed to activate the debug print statements
based on the variable from the shared module. The debug print statements now are sent to a
common file unit. The unit number is stored in idtmod.

Subroutine trnctl of RELAP5 3D was modified to incorporate the “Permission to Terminate”
logic for that mitigates PVM failures due to the Operating System shutting down buffers of
terminating processes before its data exits to coupled receiving process (Sec. 10.3 and 11.4).

Subroutines majout, miedit, and rstrec were modified to implement the DTSTEP Test Matrix
(Sec. 11). Subroutine majout was also modified to display in excess of 14 digits and/or display in
hexadecimal for some important debugging quantities.

Module contrl added a new variable, old_pvm_samedt, has been added for the detection of
potential infinite loops (Section 5.6 and 12.0).

Subroutine tran of PVMEXEC was modified to incorporate logic for the detection and mitigation
of potential infinite loops (Section 5.6). This is done by saving a new variable, old_pvm_samedt,
which saves the state of the variable pvm_samedt from the previous timestep. If both
pvm_samedt and old_pvm_pvm_samedt are non zero, the code enforces a timestep size
reduction.

Subroutine inputd of PVMEXEC has been modified to provide the ability to provide debug print
statements.

12.0 PVM-coupling and DTSTEP Problems solved
The following are a list of some of the problems fixed during the development and debugging of
the PVM coupling issues with DTSTEP. In this section, R DTSTEP refers to RELAP5 3D DTSTEP and
P DTSTEP refers to PVMEXEC DTSTEP.

Errors reported here are confined to DTSTEP errors that existed prior to the implement of the
integer timestepping algorithm and its development. Many other errors were corrected along
the way including errors in the integer timestepping implementation itself, errors in the
implementation of the DTSTEP Test Matrix, and errors in other subroutines than DTSTEP.

PVM0901 Code hangs at an unusual endtime Floating point error
Description: Hang with floating point time control at unusual times sometimes.
Analysis: The user supplied problem, time8.i, illustrates several types of code failures when
RELAP5 3D is run under the control of the PVMEXEC without being coupled to anything.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 59
of 63

Completion Report

Timecard 6 ends at 25200.0021 s with DTMAX = 0.004; thus the endtime is unusual and was
illustrative of code hangs experienced prior to the integer timestepping project.
Solution: This was resolved by converting to integer timestepping.

PVM0902 Modification for Explosive Doubling PVM conceptual design error
Description: During the final timecard, the timestep begins to double, exceeds DTMAX, and
continues doubling until the end time is reached.
Analysis: This is a problem in explicit asynchronous coupling only, since for any synchronous
coupling the RELAP5 3D timecards have no control and for RELAP5 3D standalone, there are no
overriding timecards. An error with synchronous processing arose because the method
implemented to overcome explosive doubling affected the synchronous case.
Solution: Adding a clause to prevent synchronous processes from entering the explosive
doubling control coding (reported in February 2009) resolved the problem.

PVM0903 Cumulative time in message 8000 PVM conceptual design problem
Description: The code hangs at the end of timecard; see Section 5.5.
Solution: The cumulative time was added as a ninth data item to both P and R DTSTEP. This
allows all slave processes to stay in lock step with the PVM Executive.

PVM0904 Penultimate timecard stop Old DTSTEP conceptual design error
UP 03024
Description: When running a D4 Test Matrix case, it was discovered that some asynchronous
processes would stop at the end of the second to last timecard.
Analysis and solution: This was tracked down to an error in resetting variable curclm in Section
7.1.1 of R DTSTEP. This error has been fixed.

PVM0905 Hang when HYDRO sets FAIL PVM conceptual design error
With D5, code hangs for case D5C2B1A1 case 7. Reported on 24 Mar 09.
Analysis: The algorithm designer did not realize that HYDRO could set FAIL to TRUE. When this
happens, RELAP5 TRAN send the (A OK) 10000 message to the Executive, but later during the
time step DTSTEP correctly begins the shutdown process. Thus both codes arrive at different
message wait locations.
Solution: When fail is true from hydro, in the immediately following PVM coding section, set
PVMSUCCESS = 5 to signal a repeat (because RELAP5 will repeat, then shut down).

PVM0906 Hang in explicit asynch. sequential PVM conceptual design error
The code hangs for case D6C1B1A1 cases 10 12. Reported on 25 Mar 09.
Analysis: When the leader of a sequentially coupled problem reaches the end of the interval, it
sends a message to the follower to proceed. Normally the follower receives the message in
RELAP TRAN and proceeds through advancements to the rendezvous time. However, if on the
same advancement as the receipt of the go ahead message is received, the code must repeat
the advancement, it can repeat the arrival at the receive message. This occurs on, for example,
D6C1B1A1 case 10.
Solution: The solution was to create a logical variable that DTSTEP sets whenever the code must
repeat the time step. RELAP TRAN was then modified to access the section of code containing
the above mentioned receive message only when that variable is FALSE. A temporary module,

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 60
of 63

Completion Report

BACKMOD, was created to carry it. This was done to make it more obvious when porting to F90
where the variable will be absorbed into a more appropriate module.

PVM0907 Code hang on D4C2B1A1 case 1. PVM design error
Description: Hang with D4C2B1A1 case 1 by stretching past explicit exchange time
Analysis: The value of CURTEX was not set to the endtime of the timecard, an unusual time, but
rather the multiple of DTMAX just before it. It did not perform the stretch calculation.
Solution: The calculation of integer time targets was modified to incorporate the stretch logic.
Thus if I_CURTEX + 10%IDTMAX > IDURATION (relative integer time end of timecard), then reset
I_CURTEX to the nearest multiplier of DTSMALLEST to the end time of the timecard. Then
CURTEX is set to the endtime if I_CURTEX is close to the integer timecard end time, IDURATION.

PVM0908 D4C4B1A2 cases 12 and 16 hung Old DTSTEP error
Description: Hang from repeat condition at minimum dt (expl asyn parallel)
Analysis: When SUCCES == 5 the code errs at minimal time steps. In R DTSTEP Sec. 2.3.3, the
code halves DT when SUCCES /= 5 despite DT = DT_MIN. It then doubles the time step in Section
2.4, which can only be reached when SUCCES /= 1. When DT == DT_MIN and SUCCES == 5, the
code therefore sets DT = 2*DT_MIN. This is incorrect and causes the slave process to take twice
as big a time step as the executive takes. As a result, they arrive at different messages to send
and listen.
Solution: Change the test in DTSTEP Sec 2.3.3 so that both SUCCES /= 5 and DT /= DT_MIN, in
order to halve DT. Remove the doubling of DT in DTSTEP Section 2.4. All other paths through the
code work the same because the halving and doubling cancel. This change actually makes the
code more efficient by reducing wasteful operations.

PVM0909 PVM dtstep Dead Coding PVM design Issue
Analysis: P DTSTEP was taken from R DTSTEP and reduced. Some sections of the remaining code
are no necessary and can be removed, simplified, and/or corrected. In version 2.4.1.2 P DTSTEP,
the statement “if (dt > dt_min(i))go to 70” statement is always taken; so the coding thereafter
to statement 70 can never be accessed and was removed. Moreover, in R DTSTEP, dt is halved if
SUCCES is non zero, and this test divides between minimal and non minimal time step handling.
However, halving DT is not done in P DTSTEP and so DT is always greater than the user input
minimum at that point in the calculation.
Solution: The coding beneath it was corrected to write proper error messages, not adjust the
time or time step, not reset PVM_SUCCES, and jump to the 8001 message section of coding.

PVM0910 Stretch Logic Error Corrected PVM implementation error
Analysis: For a couple synchronously coupled problems, R DTSTEP recognizes a stretch unusual
time, calculates half the distance to the unusual time as time step, takes it, but on the next
advancement, takes a shorter time step that reaches the next multiple of DTMAX. It thus
ignored the stretch logic on the second step of the stretch handler logic. The Executive and child
take different time steps and the coupled process hangs.
Solution: in R DTSTEP

 In dthyCalc: DTHY > DTMAX_I
 In Unusual Handler: EDITTIME > CURTMIN = min (endInterval(i), curtxy) where xy {mi,

mj, rs, ex}.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 61
of 63

Completion Report

Solution: in P DTSTEP
 Reset all curtxy if |endtime – curtxy| < dtsmallest

PVM0911 PVMEXEC Input Error Messages PVM implementation deficiency
Analysis: Compared to RELAP5 3D, PVMEXEC provides little information to users about input
errors. In fact under some circumstances, it will fail input with no message at all, such as if a
blank line occurs after the executive’s final timecard.
Solution (partial): A dozen new error messages were added to PVMEXEC in the subroutines
INPUTD and RNEWP.

PVM0912 64 bit error in version 2.4.4 Script and source code errors
All PVM installation test cases failed in 64 bit installation mode.
Analysis: PVM Executive declared WAIT to be real*4, but describing it as real*8 in the PVM
message because of an error in dpvmexec, the installation script. Also, ETIME was not declared
REAL*4 in TIMSET in the envrl folder.
Solution: The script was corrected and the variable was declared properly.

PVM1001 Coupled Code Induced Infinite Loop New Coupling only Error
Synchronously coupled codes enter an infinite loop caused by one code forcing a timestep
repeat which causes the other to force timestep repeat in an unending cycle; see Figure 6.

Figure 6. PVM3WAY Nodalization Diagram.

Analysis: This can occur when two or more codes each detect a failed timestep size that does
not require a reduction in timestep size to clear. For RELAP5 3D, air appearance and velocity
flip flop are two mechanism that cause timestep repeat with same timestep size and slightly
different conditions. The slightly different conditions then cause another coupled code to fail
the advancement without requiring a timestep size reduction. If this failure results in a return to
the conditions that caused the first code to fail, an infinite loop occurs; see Figure 6. Neither
code can detect this condition itself.
Solution: Since the coupled analysis codes cannot detect this condition, code was implemented
in PVMEXEC to detect the scenario. If two successive timesteps have been failed at the same
timestep size, PVMEXEC changes the timestep status from “pvm_samedt” to “pvm_smallerdt.”
Further, the original algorithm, which never ensured that a smaller timestep size was used if a
status of “pvm_smallerdt” was received, was upgraded so whenever the “pvm_smallerdt” status
is received from any of the codes, the largest timestep size that is allowed on the repeated
timestep is ½ of the previous timestep size.

Code A fails;
Code B succeeds

Repeat timestep with
slight change of solution.

Code A succeeds;
Code B fails

Repeat timestep with
slight change of solution.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 62
of 63

Completion Report

13.0 Conclusions
A new integer based timestep selection and advancement algorithm has been implemented in
the PVMEXEC and RELAP5 3D computer programs. A comprehensive code test suite was
developed. The algorithm currently has no known problems associated with it. The work to
develop the new algorithm was completed in time to support the specific need dates for a
robust algorithm.

14.0 Acknowledgements
The work on this project was supported by consultants Dr. Walter Weaver and Hope Forsmann.
Walt was a seminal author of the PVM coupling and provided explanations of many subtleties of
the workings of the coupling as well as detailed insight into the coding. Hope was steadfast and
instrumental in tracking down several of the errors listed in Section 11.

Several staff members at funding source were involved with the debugging and solving of user
problems, creation of solutions to those problems, and their implementation of those solutions
in the source code.

15.0 References
(a) Weaver, W. L., Tomlinson, E. T., Aumiller, D. L., 2002, “A PVM Executive Program for Use

with RELAP5 3D,” Proceedings of ICONE 10, Arlington VA, April 2002.

(b) W. L. Weaver, “Programmers Manual for the PVM Coupling Interface in the RELAP5 3D©
Code,” INL/EXT 05 00203, March 2005.

(c) A. R. Edwards and F. P. O’Brien, “Studies of Phenomena Connected with the
Depressurization of Water Reactors,” Journal of the British Nuclear Energy Society, Vol. 9,
1970, pp. 125 135.

(d) H. Christensen, “Power–to–Void Transfer Function,” ANL 6385, 1961.

Implementation of a New DTSTEP Algorithm
for use in RELAP5 3D and PVMEXEC

Page 63
of 63

Completion Report

Appendix A

Table 20 – Sample Testing Checklist

RELAP5 3D data
Location
of
executable

/mount/betp_p18/relap5.x

Compile
Date 20100514

Compile
Time 12:32:04

PVMEXEC data
Location of
executable /mount/betp_p18/pvmexec.x

Compile
Date 20100512

Compile
Time 09:41:24

Testing Status

Problem Name Status Comments

Matrices Works

verify Works

misc_cpl Works

cobra_restart (enhanced) Works

R5_melcor_hstr Works

long_running_single_R5 Works

User1 Works

User2 Works

User3 Works

User4 Works

User5 Works

R5_melcor – ss_complete Works

R5_melcor – tran1 Works

